{"title":"Simulation Methods to Model Chemical Processes at Elevated Pressures and the Theory of Non-Ideal Reaction Systems","authors":"Yu. K. Tovbin","doi":"10.1134/S0040579523060192","DOIUrl":"10.1134/S0040579523060192","url":null,"abstract":"<p>Literature analysis shows that the main method to model the equilibrium characteristics of reaction systems at elevated pressures, including processes under supercritical conditions, are equations of state describing the non-ideality of the vapor and liquid phases, while the law of mass action is applied to describe the kinetics of the elementary and chemical stages. The mentioned difference in the types of models used to describe the equilibrium and kinetic characteristics of the same experimental system under study violates the second law of thermodynamics formulated by Clausius. The only theoretical method consistent with the second law of thermodynamics is the molecular theory based on the lattice gas model. In order to satisfy the second law of thermodynamics, molecular models must provide the self-consistent description of the rates of the chemical process at the equilibrium and elementary stages. This means that the molecular models must provide a single mathematical apparatus to calculate the states of the system both outside and inside the equilibrium point. The molecular models can differ in both the effective parameters of the interparticle interaction and the methods of refining these models due to taking into account distinctions in sizes, contributions of the vibrational motions of the components, as well as the accuracy of description of the correlation effects. To ensure the self-consistent description of the equilibrium and kinetics, the models must at least reflect the effects of direct correlations. One-particle approximations (mean field, chaotic, density functional) do not correspond to the self-consistency condition and violate the second law of thermodynamics.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1366 - 1384"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. V. Lobovich, S. V. Solov’eva, N. A. Milevskii, Yu. A. Zakhodyaeva, A. A. Voshkin
{"title":"Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment","authors":"D. V. Lobovich, S. V. Solov’eva, N. A. Milevskii, Yu. A. Zakhodyaeva, A. A. Voshkin","doi":"10.1134/S0040579523060131","DOIUrl":"10.1134/S0040579523060131","url":null,"abstract":"<p>Hydrophilic deep eutectic solvents are actively positioned as efficient extractants for removing heterocyclic compounds from light hydrocarbon fractions. Of particular interest is the subclass of natural deep eutectic solvents (NaDESs), since they contain substances of exclusively natural origin. However, these processes have not been systematically studied to date in extraction equipment. To study the process of countercurrent extraction of pyridine, quinoline, and indole from a model solution of light hydrocarbon fractions using commercial equipment, a series of NaDESs based on citric and malic acids, xylitol, and water was used for the first time in this work. The high extraction capacity of these NaDES was demonstrated in laboratory experiments, and the extraction mechanism was determined. A detailed study of the efficiency of extraction of heterocycles with varying process conditions allowed us to move on to studying the process using extractors of the mixer–settler type. From the model solution of light hydrocarbon fractions, pyridine, quinoline, and indole were removed to concentrations <1 ppm by countercurrent extraction using a cascade of six mixer–settlers.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1276 - 1291"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Catalytic Oxidation of Dimethylformamide by Sol-Gel Method","authors":"Xiaohong Gui, Jiaying Liu, Junhui Huang, Xiange Song, Ziqiang Zhu, Chenyang Zhao","doi":"10.1134/S0040579523060076","DOIUrl":"10.1134/S0040579523060076","url":null,"abstract":"<p>The CeCuO<sub><i>x</i></sub> composite catalysts for the catalytic conversion of dimethyl formamide were prepared and catalyzed by the sol-gel method with a controlled amount of Cu. The physical and chemical properties and catalytic performance of the CeCuO<sub><i>x</i></sub> composite catalysts were characterized by X-ray diffraction analysis, N<sub>2</sub> adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy, and H<sub>2</sub>-programmed step-up reduction. The results indicate that the doping of Cu increases the particle size of the CeO<sub><i>x</i></sub> support and enhances the relative content of Ce<sup>3+</sup> species on the CeO<sub><i>x</i></sub> surface. The Cu/Ce ratio significantly influences the activity, product selectivity, and stability of the composite catalyst. Among them, Cu<sub>80</sub>Ce<sub>20</sub> exhibits the best overall performance in the catalytic reaction of dimethylformamide.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1455 - 1465"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Influence of Ionic Liquids on Solubility and Metastable Zone Width of Hen Egg Lysozyme","authors":"Yulu Wang, Na Li, Xin Zhang, Zhanzhong Wang","doi":"10.1134/S0040579523330102","DOIUrl":"10.1134/S0040579523330102","url":null,"abstract":"<p>The solubility and metastable zone width (MZW) are crucial to design and control of crystallization process. In this work, lysozyme solubility in different pH (4.0–6.0) aqueous solution at temperature ranging from 268.15 to 308.15 K were determined. The solubility and supersolubility of lysozyme with two ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride ([C<sub>4</sub>mim]Cl) and 1,3-dimethylimidazolium iodine ([dmim]I)) were measured in aqueous solution at temperature ranging from 283.15 to 298.15 K at pH 5.0, and the MZW was calculated. The results demonstrate that lysozyme solubility increases with raising pH within 4.0 to 6.0. In the presence of ILs, the solubility increases with increasing [C<sub>4</sub>mim]Cl concentrations, but decreases with increasing [dmim]I concentrations. The ILs addition concentrations were confirmed to exert obvious effect on MZW of lysozyme crystallization. Compared with no ILs added, the addition of ILs [C<sub>4</sub>mim]Cl and [dmim]I expands significantly the MZW, and the MZW increases with increasing ILs concentrations. At constant ILs concentrations, the MZW increases with decreasing saturation temperature. These findings could provide significant insights into the development of crystallization strategy and the control of crystallization process for lysozyme.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1602 - 1609"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Nazari, S. Tavangar Roosta, M. A. Zarei, M. Mahyari, H. Soori, H. Moghimi Rad
{"title":"Study the Process of Siloxane Curing by Experimental and Numerical Simulation","authors":"F. Nazari, S. Tavangar Roosta, M. A. Zarei, M. Mahyari, H. Soori, H. Moghimi Rad","doi":"10.1134/S0040579523330047","DOIUrl":"10.1134/S0040579523330047","url":null,"abstract":"<p>Curing process of siloxane polymer was studied by determining rate of heat released during Dynamic DSC analysis. Utilizing thermokinetics software were calculated model-free methods such as Kissinger, Flynn–Wall–Ozawa, Friedman and also model-fitting methods such as Coats Redfern. To improve accuracy, Khavam Flanagan’s combined method was utilized and the third-order Avrami model was determined. Simulation of the curing process was done using OpenFOAM open-source software based on the finite volume method. Simulation results were validated using DSC Isothermal data. The results of the simulated sample were in good agreement with the experimental data. The curing time was investigated in cylindrical, spherical, and cubic shapes. The longest curing time was assigned to sphere geometry and the least to rectangular cubes with equal length and width. To achieve the optimal curing method, the influence of various parameters on the curing process of polysiloxane, including oven temperature, mold geometry, boundary conditions (effect of curing in a fan oven) and geometry dimensions, resin density, and thermal conductivity coefficient were investigated.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1534 - 1551"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transformation of Dispersed Oil Systems by the Addition of Synthetic Waxes","authors":"V. I. Lukina, S. G. D’yachkova, R. G. Zhitov","doi":"10.1134/S0040579523060143","DOIUrl":"10.1134/S0040579523060143","url":null,"abstract":"<p>It was proved that polymer–bitumen binders undergo a structural transformation after the addition of synthetic waxes. UV spectroscopy study showed that wax macromolecules and compounds of the dispersed oil system enter into chemical interactions, which was detected by the disappearance of the absorption band at 260 nm in the UV spectrum of the wax–bitumen blend. This suggested the formation of crosslinked reinforcing spatial structures, which explain the observed improvement in the performance properties of the polymer–bitumen binder after the addition of synthetic waxes: an increase in the softening temperature and brittleness temperature, a decrease in penetration, and an increase in their dynamic viscosity. It was determined that the transformation of the physicochemical characteristics of the polymer–bitumen binder after the addition of wax depends on its chemical nature. Waxes with an aliphatic branched polyethylene structure (Plastobit 430F, Plastowax 200TD, Plastowax 725T, Honeywell Titan 7686) more strongly change the physicochemical characteristics of the polymer–bitumen binder in comparison with waxes of the ProPolymer MA123 and ProPolymer MA-SK-02 brands, which are maleic anhydride–grafted linear polyethylene.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1361 - 1365"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Klinov, A. R. Khairullina, A. V. Malygin, I. M. Davletbaeva
{"title":"Extractive Distillation of an Ethyl Acetate–Ethanol–Water Azeotropic Mixture in the Presence of Boric Acid Amino Ester","authors":"A. V. Klinov, A. R. Khairullina, A. V. Malygin, I. M. Davletbaeva","doi":"10.1134/S0040579523060118","DOIUrl":"10.1134/S0040579523060118","url":null,"abstract":"<p>The effect of boric acid amino ester, which was obtained from triethanolamine, boric acid, and triethylene glycol, on the conditions of vapor–liquid equilibrium in the ethyl acetate–ethanol and ethyl acetate–isopropanol azeotropic binary mixtures and the ethyl acetate–ethanol–water ternary mixture was studied both by experimental methods of open evaporation with a Świętosławski ebulliometer, and by modeling using the UNIFAC method. Parameters of the interaction of the CCOO group (in ethyl acetate) with the boron group B were determined, which are absent in the literature. A process for separating the ethyl acetate–ethanol–water azeotropic mixture by extractive distillation was proposed.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1328 - 1337"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi Objective Optimization using Non-Dominated Sort Genetic Algorithm with Artificial Neural Network for Reactive Dividing Wall Column","authors":"Swapnil Raghunath Kavitkar, Mallaiah Mekala, Srinath Suranani","doi":"10.1134/S0040579523070096","DOIUrl":"10.1134/S0040579523070096","url":null,"abstract":"<p>In this study, multi-objective optimization of reactive dividing wall column is presented. Production of methyl acetate from acetic acid and methanol is taken as case study. Machine learning approach is introduced in this work by means of artificial neural network and genetic algorithm. Required data generation, input and output variable fixation to model neural network is done from the sensitivity analysis. Based on the dataset, neural network model is trained by Lavenberg–Marquardt algorithm and predict purity and TAC of column with high accuracy. Further parametric constrained optimization of systems has been done using multi-objective genetic algorithm and set of pareto optimal solution is generated. Based on gray relational analysis, best optimal point found out. After optimization the system gives significant reduction on TAC and enhancement in purity. Results shows reactive dividing wall column reduces total annual cost around 17.77%. All the results in present work is validated with exiting literature and also cross validated with ASPEN plus.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 1 supplement","pages":"S121 - S130"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Prospect of Arsenic Removal Technology for Containing Arsenic Copper Minerals","authors":"X. W. Tang, Y. H. He","doi":"10.1134/S0040579523330096","DOIUrl":"10.1134/S0040579523330096","url":null,"abstract":"<p>Arsenic is a harmful element that widely exists in various non-ferrous metal minerals including copper. With the depletion of free and low arsenic copper ores, containing arsenic copper ore has become an important mineral resource for copper smelting and processing. In the smelting and extraction of copper minerals, arsenic poses a serious hazard to the environment. Therefore, the safe and effective removal arsenic plays a crucial role in copper smelting and processing, and it has a great significance in promoting the green and healthy development of the copper industry. This review summarized the resource characteristics of arsenic containing copper minerals, systematically analyzed current smelting progress of containing arsenic copper minerals, and searched for the difficult and key points existed in pyrometallurgical and wet processes for containing arsenic copper mines. The reasons for difficult point formation were explored in treating arsenic containing copper minerals. The pyrometallurgical roasting followed by high-temperature filtration is documented to be an important development direction for smelting and processing of arsenic containing minerals.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1594 - 1601"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing the Ultrasound-Assisted Extraction of Total Cardiac Glycosides from the Milk of Calotropis Gigantea with Response Surface Methodology","authors":"Z. Y. Gao, R. Gong, F. Gao, F. Zha","doi":"10.1134/S0040579523070072","DOIUrl":"10.1134/S0040579523070072","url":null,"abstract":"<p>The ultrasound-assisted extraction was carried out to separate the total cardiac glycoside from the milk of Calotropis gigantea, and the extraction factors was optimized by response surface method using the Box–Behnken design (BBD) on total cardiac glycoside extraction was determined and optimized. A quadratic polynomial parameter mathematical model was established. Under the optimized conditions of ethanol concentration = 40% (vol), liquid-material ratio = 40 : 1, ultrasound power = 420 W and ultrasonic time = 30 min, the total cardiac glycoside yield is 12.75%, which is very close to the predicted value of 12.48%. The model predicts the experimental data well and has a high determination coefficient (<i>R</i><sup>2</sup> = 0.992). The variables that have a greater influence on the extraction yield were selected as ultrasonic power, ultrasonic time, ethanol concentration and liquid-material ratio, respectively.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 1 supplement","pages":"S1 - S10"},"PeriodicalIF":0.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}