S. J. Love, J. Schweitzer, S. A. Woolbright, J. Bailey
{"title":"Sky Islands Are a Global Tool for Predicting the Ecological and Evolutionary Consequences of Climate Change","authors":"S. J. Love, J. Schweitzer, S. A. Woolbright, J. Bailey","doi":"10.1146/annurev-ecolsys-102221-050029","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102221-050029","url":null,"abstract":"Sky islands are unique geologic formations, home to populations of organisms that have weathered climate change since the Pleistocene. Long-term isolation and climatic differences between sky islands and adjacent mountain chains result in natural laboratories well suited for examining the direct effects of climate change. Here, we review the global sky island literature to examine how taxa have responded to climate change. Results show lineage formation, reduced genetic variation, and trait evolution across taxa driven by genetic drift and natural selection. These effects continue today due to ongoing habitat reduction and steep selective gradients on sky islands relative to mountain chains. Comparative studies and experimental manipulations are needed to build broad inference into how past climate change has shaped the structure and function of whole ecosystems. The next era of sky island research is poised to create a model for climate change responses and eco-evolutionary dynamics, with profound conservation implications. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"2 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85622825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher A. Searcy, Hunter J. Howell, A. S. David, Reid B. Rumelt, Stephanie L. Clements
{"title":"Patterns of Non-Native Species Introduction, Spread, and Ecological Impact in South Florida, the World's Most Invaded Continental Ecoregion","authors":"Christopher A. Searcy, Hunter J. Howell, A. S. David, Reid B. Rumelt, Stephanie L. Clements","doi":"10.1146/annurev-ecolsys-110421-103104","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-110421-103104","url":null,"abstract":"Invasive species are a chief threat to native biodiversity and are only becoming more common with human globalization. This creates a need to understand the patterns in invasion biology, including where invasions are most likely to occur, which species are most likely to establish and spread, and what are likely to be the most influential ecological consequences. We examine these questions through the lens of South Florida, the continental region with the most invasive species across the globe. First, understanding why South Florida has so many invasives and how they are distributed across South Florida helps us to understand where we can expect similar levels of invasion to occur. Second, understanding which species are most likely to establish, spread, and have the greatest ecological impact informs which invasions we should be most concerned about. Finally, the history of control efforts and their relative success can help guide future management practices. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"59 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83128117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Evolutionary Ecology of Plant Chemical Defenses: From Molecules to Communities","authors":"María‐José Endara, Dale L. Forrister, P. D. Coley","doi":"10.1146/annurev-ecolsys-102221-045254","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102221-045254","url":null,"abstract":"Classic theory relates herbivore pressure to the ecology and evolution of plant defenses. Here, we summarize current trends in the study of plant–herbivore interactions and how they shape the evolution of plant chemical defenses, host choice, and community composition and diversity. Inter- and intraspecific variation in defense investment is driven by resource availability. The evolution of defenses at deeper nodes of plant phylogeny is conserved, yet defenses are highly labile at the tips. On an ecological timescale, while greater specialization of tropical herbivores enhances local diversity by reducing the performance of plants with similar defenses, in temperate ecosystems with more generalist herbivores, rare defense profiles are at a disadvantage. On an evolutionary timescale, host choice by herbivores is largely determined by plant defenses rather than host phylogeny, leading to evolutionary tracking by herbivores rather than cocladogenesis. The interplay between plants and herbivores shapes both the origin and maintenance of diversity. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"39 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85850884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Disturbance Regimes and Ecological Responses","authors":"M. Turner, R. Seidl","doi":"10.1146/annurev-ecolsys-110421-101120","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-110421-101120","url":null,"abstract":"Many natural disturbances have a strong climate forcing, and concern is rising about how ecosystems will respond to disturbance regimes to which they are not adapted. Novelty can arise either as attributes of the disturbance regime (e.g., frequency, severity, duration) shift beyond their historical ranges of variation or as new disturbance agents not present historically emerge. How much novelty ecological systems can absorb and whether changing disturbance regimes will lead to novel outcomes is determined by the ecological responses of communities, which are also subject to change. Powerful conceptual frameworks exist for anticipating consequences of novel disturbance regimes, but these remain challenging to apply in real-world settings. Nonlinear relationships (e.g., tipping points, feedbacks) are of particular concern because of their disproportionate effects. Future research should quantify the rise of novelty in disturbance regimes and assess the capacity of ecosystems to respond to these changes. Novel disturbance regimes will be potent catalysts for ecological change. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"84 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76795939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Munch, T. Rogers, Bethany J. Johnson, Uttam Bhat, C. Tsai
{"title":"Rethinking the Prevalence and Relevance of Chaos in Ecology","authors":"S. Munch, T. Rogers, Bethany J. Johnson, Uttam Bhat, C. Tsai","doi":"10.1146/annurev-ecolsys-111320-052920","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-111320-052920","url":null,"abstract":"Chaos was proposed in the 1970s as an alternative explanation for apparently noisy fluctuations in population size. Although readily demonstrated in models, the search for chaos in nature proved challenging and led many to conclude that chaos is either rare or nigh impossible to detect. However, in the intervening half-century, it has become clear that ecosystems are replete with the enabling conditions for chaos. Chaos has been repeatedly demonstrated under laboratory conditions and has been found in field data using updated detection methods. Together, these developments indicate that the apparent rarity of chaos was an artifact of data limitations and overreliance on low-dimensional population models. We invite readers to reevaluate the relevance of chaos in ecology, and we suggest that chaos is not as rare or undetectable as previously believed.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"32 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73162546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Unusual Value of Long-Term Studies of Individuals: The Example of the Isle of Rum Red Deer Project","authors":"J. Pemberton, L. Kruuk, T. Clutton‐Brock","doi":"10.1146/annurev-ecolsys-012722-024041","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012722-024041","url":null,"abstract":"Long-term studies of individuals enable incisive investigations of questions across ecology and evolution. Here, we illustrate this claim by reference to our long-term study of red deer on the Isle of Rum, Scotland. This project has established many of the characteristics of social organization, selection, and population ecology typical of large, polygynous, seasonally breeding mammals, with wider implications for our understanding of sexual selection and the evolution of sex differences, as well as for their population dynamics and population management. As molecular genetic techniques have developed, the project has pivoted to investigate evolutionary genetic questions, also breaking new ground in this field. With ongoing advances in genomics and statistical approaches and the development of increasingly sophisticated ways to assay new phenotypic traits, the questions that long-term studies such as the red deer study can answer become both broader and ever more sophisticated. They also offer powerful means of understanding the effects of ongoing climate change on wild populations.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"137 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77225624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution and Ecology of Parasite Avoidance.","authors":"Amanda K Gibson, Caroline R Amoroso","doi":"10.1146/annurev-ecolsys-102220-020636","DOIUrl":"10.1146/annurev-ecolsys-102220-020636","url":null,"abstract":"<p><p>Parasite avoidance is a host defense that reduces the contact rate with parasites. We investigate avoidance as a primary driver of variation among individuals in the risk of parasitism and the evolution of host-parasite interactions. To bridge mechanistic and taxonomic divides, we define and categorize avoidance by its function and position in the sequence of host defenses. We also examine the role of avoidance in limiting epidemics and evaluate evidence for the processes that drive its evolution. Throughout, we highlight important directions to advance our conceptual and theoretical understanding of the role of avoidance in host-parasite interactions. We emphasize the need to test assumptions and quantify the effect of avoidance independent of other defenses. Importantly, many open questions may be most tractable in host systems that have not been the focus of traditional behavioral avoidance research, such as plants and invertebrates.</p>","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"53 ","pages":"47-67"},"PeriodicalIF":11.2,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724790/pdf/nihms-1851674.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9085750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susana M Wadgymar, Megan L DeMarche, Emily B Josephs, Seema N Sheth, Jill T Anderson
{"title":"Local adaptation: Causal agents of selection and adaptive trait divergence.","authors":"Susana M Wadgymar, Megan L DeMarche, Emily B Josephs, Seema N Sheth, Jill T Anderson","doi":"10.1146/annurev-ecolsys-012722-035231","DOIUrl":"10.1146/annurev-ecolsys-012722-035231","url":null,"abstract":"<p><p>Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.</p>","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"53 1","pages":"87-111"},"PeriodicalIF":11.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41095649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maureen H. Murray, Jacqueline Y. Buckley, K. Byers, Kimberly Fake, E. Lehrer, S. Magle, Christopher Stone, H. Tuten, Christopher J Schell
{"title":"One Health for All: Advancing Human and Ecosystem Health in Cities by Integrating an Environmental Justice Lens","authors":"Maureen H. Murray, Jacqueline Y. Buckley, K. Byers, Kimberly Fake, E. Lehrer, S. Magle, Christopher Stone, H. Tuten, Christopher J Schell","doi":"10.1146/annurev-ecolsys-102220-031745","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-102220-031745","url":null,"abstract":"We are facing interwoven global threats to public health and ecosystem function that reveal the intrinsic connections between human and wildlife health. These challenges are especially pressing in cities, where social-ecological interactions are pronounced. The One Health concept provides an organizing framework that promotes the health and well-being of urban communities and ecosystems. However, for One Health to be successful, it must incorporate societal inequities in environmental disamenities, exposures, and policy. Such inequities affect all One Health interfaces, including the distribution of ecosystem services and disservices, the nature and frequency of human–wildlife interactions, and legacies of land use. Here, we review the current literature on One Health perspectives, pinpoint areas in which to incorporate an environmental justice lens, and close with recommendations for future work. Intensifying social, political, and environmental unrest underscore a dire need for One Health solutions informed by environmental justice principles to help build healthier, more resilient cities. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"12 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80075774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camille Bernery, C. Bellard, F. Courchamp, S. Brosse, R. Gozlan, I. Jarić, F. Teletchea, B. Leroy
{"title":"Freshwater Fish Invasions: A Comprehensive Review","authors":"Camille Bernery, C. Bellard, F. Courchamp, S. Brosse, R. Gozlan, I. Jarić, F. Teletchea, B. Leroy","doi":"10.1146/annurev-ecolsys-032522-015551","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-032522-015551","url":null,"abstract":"Freshwater fish have been widely introduced worldwide, and freshwater ecosystems are among those most affected by biological invasions. Consequently, freshwater fish invasions are one of the most documented invasions among animal taxa, with much information available about invasive species, their characteristics, invaded regions, invasion pathways, impacts, and management. While existing reviews address specific aspects of freshwater fish invasions, there is still a gaping lack of comprehensive assessments of freshwater fish invasions that simultaneously address pivotal and connected elements of the invasion process. Here, we provide a holistic review, together with quantitative assessments, divided into four major parts: ( a) introduction pathways, ( b) characteristics of nonnative species and invaded ecosystems that explain successful invasion processes, ( c) invasion impacts and their mechanisms, and ( d) management. We highlight data gaps and biases in the current databases and highlight a basic lack of understanding of several aspects of freshwater fish invasions. In addition, we provide recommendations for future studies. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"22 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90867688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}