{"title":"Masthead: Ann. Phys. 12/2024","authors":"","doi":"10.1002/andp.202470028","DOIUrl":"https://doi.org/10.1002/andp.202470028","url":null,"abstract":"","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 12","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202470028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"(Ann. Phys. 12/2024)","authors":"","doi":"10.1002/andp.202470027","DOIUrl":"https://doi.org/10.1002/andp.202470027","url":null,"abstract":"<p><b>Kirigami/Origami Metasurfaces for Controlling Electromagnetic Waves</b></p><p>Kirigami and origami provide versatile spatial deformations in the design of reconfigurable metasurfaces, leading to various applications in deployable devices. In article number 2400213, Yilin Zheng, Ke Chen, and Yijun Feng provide an overview highlighting the implementations of kirigami/origami metasurfaces and their applications in controlling electromagnetic waves.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 12","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202470027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bound States in the Continuum in Photonics and Metasurfaces: From Phenomena to Applications","authors":"Wenjie Zhou, Guangcheng Sun, Yueyi Yuan, Yuxiang Wang, Shah Nawaz Burokur, Yue Wang, Kuang Zhang","doi":"10.1002/andp.202400250","DOIUrl":"https://doi.org/10.1002/andp.202400250","url":null,"abstract":"<p>Bound states in the continuum (BICs) refer to nonradiative eigenmodes located within the radiation continuum, possessing infinitely high <i>Q</i>-factor and enabling exceptionally strong light–matter interactions. BICs have found applications across various domains in photonics and metasurfaces, including nonlinear optical enhancement, vortex beam generation, sensor technology, microlasers, and other related areas. This work starts by classifying the phenomena of BICs and introducing the theoretical formation mechanisms and topological characteristics. Then, the current and advanced applications based on BIC-devices are highlighted. Lastly, this work discusses the current challenges in studies related to BICs, such as structural precision, material selection, and measurement difficulties, and prospect the possible potentials in future developments. This review provides a theoretical background and application prospects of BIC-engineered devices in optical and photonics fields, laying a solid foundation for future industrial applications.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of the Hawking Effect on the Fully Entangled Fraction of Three-Qubit States in Schwarzschild Spacetime","authors":"Guang-Wei Mi, Xiaofen Huang, Shao-Ming Fei, Tinggui Zhang","doi":"10.1002/andp.202400308","DOIUrl":"https://doi.org/10.1002/andp.202400308","url":null,"abstract":"<p>Wu et al. [J. High Energ. Phys. <b>2023</b>, 232 (2023)] first found that the fidelity of quantum teleportation with a bipartite entangled resource state, completely determined by the fully entangled fraction (FEF) characterized by the maximal fidelity between the given quantum state and the set of maximally entangled states, can monotonically increase in Schwarzschild spacetime. The Hawking effect on the FEF of quantum states in tripartite systems is investigated. In this study, it is showed that the Hawking effect of a black hole may both decrease and increase the FEF in Schwarzschild spacetime. For an initial X-type state, it is found that the Hawking effect of the black hole has both positive and negative impacts on the FEF of Dirac fields, depending on the selection of initial states. For an initial W-like state, the Hawking effect of the black hole has only a positive impact on the FEF of Dirac fields, independent of the selection of initial states. These results provide an insightful view of quantum teleportation in multipartite systems under the influence of Hawking effects, from the perspective of quantum information and general relativity.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hector L. Carrion, Onofre Rojas, Cleverson Filgueiras, Moises Rojas
{"title":"Decoherence Effects on Local Quantum Fisher Information and Quantum Coherence in a Spin-\u0000 \u0000 \u0000 1\u0000 /\u0000 2\u0000 \u0000 $1/2$\u0000 Ising-\u0000 \u0000 \u0000 X\u0000 Y\u0000 Z\u0000 \u0000 $XYZ$\u0000 Chain","authors":"Hector L. Carrion, Onofre Rojas, Cleverson Filgueiras, Moises Rojas","doi":"10.1002/andp.202400200","DOIUrl":"https://doi.org/10.1002/andp.202400200","url":null,"abstract":"<p>This research explores the effects of decoherence on local quantum Fisher information and quantum coherence dynamics in a spin-1/2 Ising-XYZ chain model with independent reservoirs at zero temperature. Contrasting these effects with those in the spin-1/2 Heisenberg XYZ model reveals intricate interactions among quantum coherence, entanglement, and environmental decoherence in spin systems. Analysis of coherence dynamics highlights differences between the original and hybrid models, showcasing increased entanglement due to Ising interactions alongside reduced coherence from environmental redistribution. <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mi>Q</mi>\u0000 <mi>F</mi>\u0000 <mi>I</mi>\u0000 </mrow>\u0000 <annotation>$LQFI$</annotation>\u0000 </semantics></math> proves more resilient than coherence in specific scenarios, emphasizing decoherence's varying impacts on quantum correlations. This research underscores the complexity of quantum coherence dynamics and the crucial role of environmental factors in shaping quantum correlations, providing insights into entanglement and coherence behavior under environmental influences and guiding future studies in quantum information processing and correlation dynamics.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}