Sébastien Boinot, Audrey Alignier, Jonathan Storkey
{"title":"Landscape perspectives for agroecological weed management. A review","authors":"Sébastien Boinot, Audrey Alignier, Jonathan Storkey","doi":"10.1007/s13593-023-00941-5","DOIUrl":"10.1007/s13593-023-00941-5","url":null,"abstract":"<div><p>Faced with the biodiversity extinction crisis and climate change, alternative approaches to food production are urgently needed. Decades of chemical-based weed control have resulted in a dramatic decline in weed diversity, with negative repercussions for agroecosystem biodiversity. The simplification of cropping systems and the evolution of herbicide resistance have led to the dominance of a small number of competitive weed species, calling for a more sustainable approach that considers not only weed abundance but also community diversity and composition. Agroecological weed management involves harnessing ecological processes to minimize the negative impacts of weeds on productivity and maximize biodiversity. However, the current research effort on agroecological weed management is largely rooted in agronomy and field-scale farming practices. In contrast, the contributions of landscape-scale interventions on agroecological weed management are largely unexplored (e.g., interventions to promote pollinators and natural enemies or carbon sequestration). Here, we review current knowledge of landscape effects on weed community properties (abundance, diversity, and composition) and seed predation (a key factor in agroecological weed management). Furthermore, we discuss the ecological processes underlying landscape effects, their interaction with in-field approaches, and the implications of landscape-scale change for agroecological weed management. Notably, we found that (1) landscape context rarely affects total weed abundance; (2) configurational more than compositional heterogeneity of landscapes is associated with higher alpha, beta, and gamma weed diversity; (3) evidence for landscape effects on weed seed predation is currently limited; and (4) plant spillover from neighboring habitats is the most common interpretation of landscape effects on weed community properties, whereas many other ecological processes are overlooked. Strikingly, the drivers of weed community properties and biological regulation at the landscape scale remain poorly understood. We recommend addressing these issues to better integrate agroecological weed management into landscape-scale management, which could inform the movement towards managing farms at wider spatiotemporal scales than single fields in a single season.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00941-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riccardo Zustovi, Sofie Landschoot, Kevin Dewitte, Greet Verlinden, Reena Dubey, Steven Maenhout, Geert Haesaert
{"title":"Intercropping indices evaluation on grain legume-small grain cereals mixture: a critical meta-analysis review","authors":"Riccardo Zustovi, Sofie Landschoot, Kevin Dewitte, Greet Verlinden, Reena Dubey, Steven Maenhout, Geert Haesaert","doi":"10.1007/s13593-023-00934-4","DOIUrl":"10.1007/s13593-023-00934-4","url":null,"abstract":"<div><p>Intercropping is a mature and well-known agronomic practice that began to attract interest from the scientific community in the mid-1900s and has known an exponential growth in research activity since the beginning of this century. Over the years, different intercropping indices have been developed to evaluate the performance of this crop production system in comparison to standard monoculture practices. Nowadays, more than 20 of these intercropping indices have been described in scientific literature. This review aims to review these indices and check their performance using a meta-dataset consisting of data points from various intercropping experiments that have been described in peer-reviewed publications. Our results show that different indices evaluate different aspects of intercropping trials and that commonly used indices generally do not capture the full performance of the system. More specifically, intercropping results are influenced by both the total sowing density and the crop ratio and indices differ in the way that these dependencies are accounted for. This study suggests creating a standard protocol for the intercropping trials and their evaluation as crucial elements to optimize intercropping research.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Célia Ruau, Victoria Naipal, Nathalie Gagnaire, Carlos Cantero-Martinez, Bertrand Guenet, Benoit Gabrielle
{"title":"Soil erosion has mixed effects on the environmental impacts of wheat production in a large, semi-arid Mediterranean agricultural basin","authors":"Célia Ruau, Victoria Naipal, Nathalie Gagnaire, Carlos Cantero-Martinez, Bertrand Guenet, Benoit Gabrielle","doi":"10.1007/s13593-023-00942-4","DOIUrl":"10.1007/s13593-023-00942-4","url":null,"abstract":"<div><p>Soil erosion poses a significant threat to agricultural production worldwide, with a still-debated impact on the current increase in atmospheric CO<sub>2</sub>. Whether erosion acts as a net carbon (C) source or sink also depends on how it influences greenhouse gas (GHG) emissions via its impact on crop yield and nutrient loss. These effects on the environmental impacts of crops remain to be considered. To fill this gap, we combined watershed-scale erosion modeling with life cycle assessment to evaluate the influence of soil erosion on environmental impacts of wheat production in the Ebro River basin in Spain. This study is the very first to address the full GHG balance of erosion including its impact on soil fertility and its feedback on crop yields. Two scenarios were simulated from 1860 to 2005: an eroded basin involving conventional agricultural practices, and a non-eroded basin involving conservation practices such as no-till. Life cycle assessment followed a cradle-to-farm-gate approach with a focus on recent decades (1985–2005). The mean simulated soil erosion of the eroded basin was 2.6 t ha<sup>−1</sup> year<sup>−1</sup> compared to the non-eroded basin. Simulated soils in both eroded and non-eroded basins lost organic C over time, with the former emitting an additional 55 kg CO<sub>2</sub> ha<sup>−1</sup> year<sup>−1</sup>. This net C source represented only 3% of the overall life cycle GHG emissions of wheat grain, while the emissions related to the increase of fertilizer inputs to compensate for N and P losses contributed a similar percentage. Wheat yield was the most influential parameter, being up to 61% higher when implementing conservation practices. Even at the basin scale, erosion did not emerge as a net C sink and increased GHG emissions of wheat by 7–70%. Nonetheless, controlling erosion through soil conservation practices is strongly recommended to preserve soils, increase crop yields, and mitigate GHG emissions.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xabier Díaz de Otálora , Agustín del Prado, Federico Dragoni, Lorraine Balaine, Guillermo Pardo, Wilfried Winiwarter, Anna Sandrucci, Giorgio Ragaglini, Tina Kabelitz, Marek Kieronczyk, Grete Jørgensen, Fernando Estellés, Barbara Amon
{"title":"Modelling the effect of context-specific greenhouse gas and nitrogen emission mitigation options in key European dairy farming systems","authors":"Xabier Díaz de Otálora , Agustín del Prado, Federico Dragoni, Lorraine Balaine, Guillermo Pardo, Wilfried Winiwarter, Anna Sandrucci, Giorgio Ragaglini, Tina Kabelitz, Marek Kieronczyk, Grete Jørgensen, Fernando Estellés, Barbara Amon","doi":"10.1007/s13593-023-00940-6","DOIUrl":"10.1007/s13593-023-00940-6","url":null,"abstract":"<div><p>Understanding the environmental consequences associated with dairy cattle production systems is crucial for the implementation of targeted strategies for emission reduction. However, few studies have modelled the effect of tailored emission mitigation options across key European dairy production systems. Here, we assess the single and combined effect of six emission mitigation practises on selected case studies across Europe through the Sustainable and Integrated Management System for Dairy Production model. This semi-mechanistic model accounts for the interacting flows from a whole-farm perspective simulating the environmental losses in response to different management strategies and site-specific conditions. The results show how reducing the crude protein content of the purchased fraction of the diet was an adequate strategy to reduce the greenhouse gas and nitrogen emission intensity in all systems. Furthermore, implementing an anaerobic digestion plant reduced the greenhouse gas emissions in all tested case studies while increasing the nitrogen emissions intensity, particularly when slurry was applied using broadcast. Regarding the productivity increase, contrasting effects were observed amongst the case studies modelled. Moreover, shallow slurry injection effectively mitigated the intensity of nitrogen losses from the fields due to strong reductions in ammonia volatilisation. When substituting urea with ammonium nitrate as mineral fertiliser, site-specific conditions affected the mitigation potential observed, discouraging its application on sandy-loam soils. Rigid slurry covers effectively reduced the storage-related nitrogen emissions intensity while showing a minor effect on total greenhouse gas emission intensity. In addition, our results provide novel evidence regarding the advantages of cumulative implementation of adapted mitigation options to offset the negative trade-offs of single-option applications (i.e. slurry covers or anaerobic digestion and slurry injection). Through this study, we contribute to a better understanding of the effect of emission mitigation options across dairy production systems in Europe, thus facilitating the adoption of tailored and context-specific emission reduction strategies.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00940-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mounir Seghouani, Matthieu Nicolas Bravin, Alain Mollier
{"title":"Crop response to nitrogen-phosphorus colimitation: theory, experimental evidences, mechanisms, and models. A review","authors":"Mounir Seghouani, Matthieu Nicolas Bravin, Alain Mollier","doi":"10.1007/s13593-023-00939-z","DOIUrl":"10.1007/s13593-023-00939-z","url":null,"abstract":"<div><p>Crops need adequate mineral nutrition to ensure optimal growth and yield. Nitrogen (N) and phosphorus (P) are two major elements that are essential for crop growth. However, situations of N-P colimitation are frequent in agroecosystems. Hence, our ability to optimize crop production under these conditions depends on our ability to analyze and predict the response of crops to colimitation. Traditionally, agronomists rely on the law of the minimum (LM) to manage colimitation situations. This law states that crop growth is constrained by the most limiting element. In contrast, the multiple limitation hypothesis (MLH) argues that crops can adapt by balancing their resource allocation with the best compromise to maximize their growth. These two hypotheses result in contrasting growth response patterns. The aim of the present review is to identify the crop response pattern to N-P colimitation through an assessment of experimental results against a conceptual framework and to report the main mechanism involved in this interaction. Finally, an inventory of existing crop models handling N-P colimitation is presented and possible ways of improvement are proposed. This review allowed us to (1) remind of the published theories used to classify colimitation types, (2) highlight the fact that a large range of crops mostly showed MLH-response patterns, (3) report that the variability in crop response patterns is linked to pedoclimatic variation, (4) identify multiple mechanisms that may be involved in plant adaptation to N-P colimitation, (5) suggest that the interplay between the different mechanisms results in complex responses that are difficult to understand experimentally, (6) report that few models handle N-P colimitation and that most of them rely on the law of the minimum, and (7) recommend possible ways to improve model formalization for a better simulation of crop responses under N-P colimitation.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asma Jebari, Fabiana Pereyra-Goday, Atul Kumar, Adrian L. Collins, M. Jordana Rivero, Graham A. McAuliffe
{"title":"Feasibility of mitigation measures for agricultural greenhouse gas emissions in the UK. A systematic review","authors":"Asma Jebari, Fabiana Pereyra-Goday, Atul Kumar, Adrian L. Collins, M. Jordana Rivero, Graham A. McAuliffe","doi":"10.1007/s13593-023-00938-0","DOIUrl":"10.1007/s13593-023-00938-0","url":null,"abstract":"<div><p>The UK Government has set an ambitious target of achieving a national “net-zero” greenhouse gas economy by 2050. Agriculture is arguably placed at the heart of achieving net zero, as it plays a unique role as both a producer of GHG emissions and a sector that has the capacity via land use to capture carbon (C) when managed appropriately, thus reducing the concentration of carbon dioxide (CO<sub>2</sub>) in the atmosphere. Agriculture’s importance, particularly in a UK-specific perspective, which is also applicable to many other temperate climate nations globally, is that the majority of land use nationwide is allocated to farming. Here, we present a systematic review based on peer-reviewed literature and relevant “grey” reports to address the question “how can the agricultural sector in the UK reduce, or offset, its direct agricultural emissions at the farm level?” We considered the implications of mitigation measures in terms of food security and import reliance, energy, environmental degradation, and value for money. We identified 52 relevant studies covering major foods produced and consumed in the UK. Our findings indicate that many mitigation measures can indeed contribute to net zero through GHG emissions reduction, offsetting, and bioenergy production, pending their uptake by farmers. While the environmental impacts of mitigation measures were covered well within the reviewed literature, corresponding implications regarding energy, food security, and farmer attitudes towards adoption received scant attention. We also provide an open-access, informative, and comprehensive dataset for agri-environment stakeholders and policymakers to identify the most promising mitigation measures. This research is of critical value to researchers, land managers, and policymakers as an interim guideline resource while more quantitative evidence becomes available through the ongoing lab-, field-, and farm-scale trials which will improve the reliability of agricultural sustainability modelling in the future.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00938-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agroforestry supports high bird diversity in European farmland","authors":"Manon Edo, Martin H. Entling, Verena Rösch","doi":"10.1007/s13593-023-00936-2","DOIUrl":"10.1007/s13593-023-00936-2","url":null,"abstract":"<div><p>Intensification and homogenization of agricultural landscapes have led to a strong decline in European farmland birds. Agroforestry systems, which were widespread in the past, are regaining attention as they could return structural heterogeneity to agricultural landscapes. However, few studies focus on the effects of such systems on biodiversity and especially bird diversity. We hypothesized that agroforestry systems host a higher alpha and beta diversity of birds compared to open agriculture as well as distinct bird communities. Moreover, we expected that bird communities in temperate Europe and the Mediterranean are differently affected by agroforestry systems. In this study, we assessed breeding bird diversity via audio recordings in nineteen mature agroforestry plots, comprising both silvoarable and silvopastoral systems distributed across seven countries in temperate and Mediterranean Europe. For comparison, bird diversity was also assessed in nearby open agricultural land, forests, and orchards. Bird species richness in agroforestry was more than doubled compared to open agricultural land and similar to the diversity found in forests and orchards. Community composition and within-habitat beta diversity differed between the habitat types and between European regions. While temperate agroforestry systems hosted generalist and woody habitat species, bird communities in Mediterranean agroforestry were composed of species from both open and woody habitats. Beta diversity was significantly higher in agroforestry than in open agriculture in temperate systems but not in the Mediterranean. Our study demonstrates that agroforestry systems represent a valuable habitat for breeding birds in European agricultural landscapes. A wider adoption of these systems could thus contribute to halting and reversing the decline in bird diversity, especially in temperate agricultural landscapes. </p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00936-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138822347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurelie Wilfart, Vincent Baillet, Lorraine Balaine, Xabier Díaz de Otálora, Federico Dragoni, Dominika Joanna Krol, Joanna Frątczak-Müller, Anna Rychła, Divina Gracia P. Rodriguez, James Breen, Vasileios Anestis, Cathal Buckley, Habtamu Alem, Wilfried Winiwarter, Nouraya Akkal-Corfini, Barbara Amon
{"title":"DEXi-Dairy: an ex post multicriteria tool to assess the sustainability of dairy production systems in various European regions","authors":"Aurelie Wilfart, Vincent Baillet, Lorraine Balaine, Xabier Díaz de Otálora, Federico Dragoni, Dominika Joanna Krol, Joanna Frątczak-Müller, Anna Rychła, Divina Gracia P. Rodriguez, James Breen, Vasileios Anestis, Cathal Buckley, Habtamu Alem, Wilfried Winiwarter, Nouraya Akkal-Corfini, Barbara Amon","doi":"10.1007/s13593-023-00935-3","DOIUrl":"10.1007/s13593-023-00935-3","url":null,"abstract":"<div><p>Growing awareness of global challenges and increasing pressures on the farming sector, including the urgent requirement to rapidly cut greenhouse gases (GHG) emissions, emphasize the need for sustainable production, which is particularly relevant for dairy production systems. Comparing dairy production systems across the three sustainability dimensions is a considerable challenge, notably due to the heterogeneity of production conditions in Europe. To overcome this, we developed an ex post multicriteria assessment tool that adopts a holistic approach across the three sustainability dimensions. This tool is based on the DEXi framework, which associates a hierarchical decision model with an expert perspective and follows a tree shaped structure; thus, we called it the DEXi-Dairy tool. For each dimension of sustainability, qualitative attributes were defined and organized in themes, sub-themes, and indicators. Their choice was guided by three objectives: (i) better describe main challenges faced by European dairy production systems, (ii) point out synergies and trade-offs across sustainability dimensions, and (iii) contribute to the identification of GHG mitigation strategies at the farm level. Qualitative scales for each theme, sub-theme, and indicator were defined together with weighting factors used to aggregate each level of the tree. Based on selected indicators, a list of farm data requirements was developed to populate the sustainability tree. The model was then tested on seven case study farms distributed across Europe. DEXi-Dairy presents a qualitative method that allows for the comparison of different inputs and the evaluation of the three sustainability dimensions in an integrated manner. By assessing synergies and trade-offs across sustainability dimensions, DEXi-Dairy is able to reflect the heterogeneity of dairy production systems. Results indicate that, while trade-offs occasionally exist among respective selected sub-themes, certain farming systems tend to achieve a higher sustainability score than others and hence could serve as benchmarks for further analyses.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 6","pages":""},"PeriodicalIF":7.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00935-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138582632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pesticide-free arable cropping systems: performances, learnings, and technical lock-ins from a French long-term field trial","authors":"Caroline Colnenne-David, Marie-Hélène Jeuffroy, Gilles Grandeau, Thierry Doré","doi":"10.1007/s13593-023-00931-7","DOIUrl":"10.1007/s13593-023-00931-7","url":null,"abstract":"<div><p>To ensure regular and high yields, current agriculture is based on intensive use of pesticides and fertilizers, which are detrimental to the environment and human health. Moreover, as pest resistance to pesticides increases, and more and more pesticides are taken off the market, national and European policies are becoming powerful drivers to deliver pesticide-free farming systems. Whereas numerous studies have compared organic versus conventional systems, our study assessed, for the first time, the performances of a pesticide-free arable cropping system (No-Pesticide), using synthetic fertilizers, specifically designed to produce high yields and meet environmental goals. This system was compared with an input-based cropping system designed with the same environmental targets (PHEP: productive with high environmental performances) in an 11-year field trial in France (Paris Basin). Banning pesticides did not result in a significant average yield gap (in GJ.ha<sup>−1</sup>.year<sup>−1</sup> or in kg N.ha<sup>−1</sup>.year<sup>−1</sup>) calculated over the crop sequence. Yet, some crops’ yields significantly decreased, due either to pest damages, or to limited nitrogen nutrition. In the No-Pesticide system, the mycotoxin content of cereal grains was lower than the regulatory threshold, and the average wheat protein content was higher than the required standard for baking. Indirect energy consumption, total greenhouse gas emissions, number of technical operations, nitrogen fertilizer amounts, and treatment frequency indexes were significantly lower compared to the PHEP system. Conversely, results showed significantly higher direct energy consumption, direct greenhouse gas emissions, and number of work hours for weed control. We identify highly effective agricultural strategies to avoid pesticide use (e.g., widely diverse and long crop sequence; introduction of hemp) and pinpoint several technical lock-ins hampering steady production in pesticide-free systems. We argue that more experiments should be undertaken to deliver technical knowledge for managing major or orphan species within pesticide-free systems, and to provide supplementary results, including economic and social performances.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 6","pages":""},"PeriodicalIF":7.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00931-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138449707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. R. de Snoo, J. van Dijk, W. Vletter, C. J. M. Musters
{"title":"People’s appreciation of colorful field margins in intensively used arable landscapes and the conservation of plants and invertebrates","authors":"G. R. de Snoo, J. van Dijk, W. Vletter, C. J. M. Musters","doi":"10.1007/s13593-023-00933-5","DOIUrl":"10.1007/s13593-023-00933-5","url":null,"abstract":"<div><p>Sown field margins can improve the conservation of biodiversity in rural areas and can contribute to the aesthetics of rural landscapes, thereby potentially increasing public support for agri-environmental measures. However, these two functions do not necessarily coincide. This raises the question whether field margins that are appreciated for their contribution to landscape aesthetics also deliver on the conservation of biodiversity. We conducted choice experiments with different groups of citizens and collected biodiversity data in the Netherlands, to investigate if the number of colors and vegetation cover in field margins increased respondents’ appreciation for them, and how these visual cues correlated with taxonomic diversity and abundance of plants and invertebrates in those field margins. Using manipulated photos, we also assessed whether the presence of colorful field margins in a range of different rural landscapes increased respondents’ appreciation of those landscapes. Respondents preferred colorful margins with high vegetation cover and showed a preference for green rural landscapes with colorful field margins. The presence of colorful field margins increased landscape aesthetics most in the least appreciated landscapes. The number of colors correlated positively with the diversity of sown and spontaneous plant species, and overall invertebrate abundance and abundance of predatory invertebrates, but was not related to invertebrate diversity. Our results show for the first time that colorful field margins support both public appreciation and diversity of plants and abundance of ground-dwelling invertebrates, with potential advantages to farmers in terms of natural pest control, at least in intensively used agricultural landscapes. However, management practices to maintain a high number of colors over time may be detrimental for invertebrate diversity. To optimize the different functions, we recommend that field margin layouts should consist of a perennial part that is allowed to develop over time, in combination with a part that is managed for its colorfulness.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 6","pages":""},"PeriodicalIF":7.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138442632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}