{"title":"Experimental Study and Kinetic Modeling of Aniline Polymerization","authors":"V. Dharmawat, J. Gyal, P. Sutar","doi":"10.1134/S1990793124700490","DOIUrl":"10.1134/S1990793124700490","url":null,"abstract":"<p>Polyaniline is a conducting polymer with a wide variety of applications. In the recent years, exploring the different avenues for the synthesis of polyaniline has gained immense popularity among the researchers. This study focuses on the experimental investigation and subsequent data modeling to determine the kinetics of chemical (oxidative) polymerization of aniline with ammonium persulfate as an oxidant in aqueous hydrochloric acid solutions at 277 K. The concentration of the polyaniline formed was determined using colorimetry. The effect of different initial concentrations of oxidant/monomer from 0.010–0.025 M on the rate of polymerization was observed. The polymerization kinetics at various initial oxidant to monomer mole ratios from 1–2.5 was also investigated. Using a well-established kinetic rate expression, the reaction rate constants were determined that best fitted the experimental data. Further, the polyaniline concentrations were predicted using the kinetic parameters with an absolute average relative deviation ranging from 4 to 17%.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1166 - 1176"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alkali Metals Doped Cu0.94A0.06O (A = Li, Na and K) Thin Films: Facile Synthesis, Structural, Optical and Thermoelectric Properties","authors":"M. N. E. Boumezrag, K. Almi, S. Lakel, H. Touhami","doi":"10.1134/S1990793124700325","DOIUrl":"10.1134/S1990793124700325","url":null,"abstract":"<p>The lack of successful <i>p</i>-type semiconductor oxides delays the future implementation of metal oxide semiconductor photovoltaic and thermoelectric devices. In the group semiconducting compounds, copper oxides present promising electrical, optical and manufacturing features that establish this family of materials suitable for p-type semiconductor applications. In this work, we focused on the growth of alkali doped CuO thin films, aiming for enhancements of their structural, optical, electrical and thermoelectric response. During this study, we highlight the effect of copper oxide doped with alkali ions (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>) prepared by the sol-gel technique and deposited on glass substrates. The effective substitution of the alkali elements into CuO lattice is analyzed by physical characterization i.e. X-ray diffraction, the spectra matched well with the monoclinic phase. Ultraviolet-visible spectroscopy showed that the band gap energy tends to increase with alkali doping and achieves a maximal value with (Li<sup>+</sup>) doping. Among the alkali ions (Li<sup>+</sup>) was the most effective to enhance electrical conductivity. Conductivity type showed by thermoelectric/hot prop confirmed the P-type conductivity. The maximum power factor PF was (9.776 × 10<sup>–10</sup> W m<sup>–1</sup> K<sup>–2</sup>) for Li doped CuO. The present work is worth significant for thermoelectric devices.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"895 - 906"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Ya. Troshin, N. M. Rubtsov, V. I. Chernysh, G. I. Tsvetkov, I. O. Shamshin, Yu. A. Izmaylova, A. P. Kalinin, A. A. Leont’ev, A. I. Rodionov
{"title":"Catalytic Ignition of Deuterium–Air Mixtures Over a Metallic Rhodium Surface at Pressures of 1–2 ATM","authors":"K. Ya. Troshin, N. M. Rubtsov, V. I. Chernysh, G. I. Tsvetkov, I. O. Shamshin, Yu. A. Izmaylova, A. P. Kalinin, A. A. Leont’ev, A. I. Rodionov","doi":"10.1134/S1990793124700428","DOIUrl":"10.1134/S1990793124700428","url":null,"abstract":"<p>The patterns of catalytic ignition of deuterium–air mixtures above the surface of metallic rhodium at pressures of 1–2 atm and temperatures of 20–250°C using hyperspectrometers in the range of 400–1650 nm and high-speed filming have been established. It is established that the catalytic ignition of deuterium–air mixtures in the studied temperature range is observed at a deuterium content of more than 12%; and at a deuterium content of less than 12%, only intense heating of the catalytic wire is observed. It is shown that the initial ignition source occurs on the surface of the reactor. In subsequent experiments, under the same conditions, the location of the original center changes. It has been found that the upper limit of the catalytic ignition above the D<sub>2</sub>–air mixture is noticeably lower than the lower ignition limit of the H<sub>2</sub>–air mixture. Thus, D<sub>2</sub> is more combustible than H<sub>2</sub> over the surface of Rh at a pressure above 1 atm. The limits of catalytic ignition are even lower than 20°C, although the flame velocity in hydrogen–air mixtures and the flame temperature in these mixtures of the same composition are much higher than those of deuterium–air mixtures. The nature of the detected kinetic inverse isotope effect is probably determined by the high level of activity of rhodium deuteride in relation to the deuterium oxidation reaction.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"973 - 979"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Ya. Gerasimov, V. Yu. Levashov, P. V. Kozlov, N. G. Bykova, I. E. Zabelinsky
{"title":"Methods for Measuring the Electron Concentration in Shock Waves","authors":"G. Ya. Gerasimov, V. Yu. Levashov, P. V. Kozlov, N. G. Bykova, I. E. Zabelinsky","doi":"10.1134/S1990793124700386","DOIUrl":"10.1134/S1990793124700386","url":null,"abstract":"<p>The current state of research on measuring the electron concentration in low-temperature plasma in the vicinity of a strong shock wave, which simulates the conditions of the descend spacecraft entry into the Earth’s atmosphere, is considered. Various physicochemical processes leading to the formation of low-temperature plasma both ahead of the shock wave front and in the shock-heated gas are analyzed. A critical review of various plasma diagnostic methods is made, and their advantages and disadvantages are noted. Numerous experimental data on measuring the electron concentration in various shock-heated gases in various conditions are analyzed.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"934 - 944"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Water Microdroplets on the Development of Hydrogen-Air Flame Instability in a Channel","authors":"I. S. Yakovenko, A. D. Kiverin","doi":"10.1134/S1990793124700623","DOIUrl":"10.1134/S1990793124700623","url":null,"abstract":"<p>This paper studies the numerical analysis of the gaseous combustion process in a channel with a hydrogen-air mixture with the inflow of a fresh mixture seeded with microdroplets of water. The dynamics of microdroplets are described in the Lagrangian approximation, which makes it possible to identify the role of the local interaction between the droplets and the flame front. It is shown that the impact of droplets on the front can provoke the generation of disturbances of the flame front and intensify the development of the front’s instability, thereby causing an integral increase in the combustion rate. Using the spectral analysis of the structure of the front in the presence of microdroplets, the dynamics of the development of individual harmonics of the front’s disturbances is analyzed and the mechanisms of the evolution of the flame front under the influence of microdroplets of water are identified.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1069 - 1076"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Mechanical Activation and Impurity Gas Release on the Macrokinetics of Combustion and the Product Structure in the Ti–C–B System for Pressed Compacts and Granulated Mixtures","authors":"D. S. Vasilyev, B. S. Seplyarskii, N. A. Kochetov","doi":"10.1134/S1990793124700556","DOIUrl":"10.1134/S1990793124700556","url":null,"abstract":"<p>The influence of mechanical activation (MA) of the (100 – <i>x</i>)(Ti + C) + <i>x</i>(Ti + 2B) system on the characteristics of combustion of samples with different macrostructures—pressed compacts with a relative density of 0.53–0.6 and bulk density granules 0.6–1.6 mm in size—is studied. It is found that MA of powders leads to a gradual decrease in the combustion rate of pressed samples as the Ti + 2B content in the mixtures increases (a descending dependence), while an increase in the Ti + 2B content in compacts of nonactivated powders leads to an increase in the combustion rate (an ascending dependence). The obtained results contradict the theoretical ideas about the influence of MA on the combustion process, according to which the combustion rate should increase. One of the important factors influencing the change in the combustion rate is the release of impurity gases (IGs). For the first time, the influence of MA on the combustion patterns of granular mixtures is experimentally determined. It is found that the burning rates of granular mixtures are higher than those of powder mixtures for all the compositions studied. It is shown that granulated mixtures from an activated powder have a combustion rate that is on average 3 times higher than granules from a nonactivated powder, and the dependence of the combustion rate on the mass content of Ti + 2B has a local minimum, which is probably related to the peculiarities of the MA process.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1009 - 1018"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selectivity and Sensitivity Evaluation of Embedded BN-Nanostructure as a Gas Detector for Air Pollution Scavenging: a Theoretical Study","authors":"F. Mollaamin, M. Monajjemi","doi":"10.1134/S1990793124700507","DOIUrl":"10.1134/S1990793124700507","url":null,"abstract":"<p>This article aims to investigate the structural, electromagnetic, and thermodynamic properties of toxic gases molecules including nitric oxide (NO), nitrogen oxide (NO<sub>2</sub>), and nitrous oxide (N<sub>2</sub>O) during adsorption on the surface of boron nitride (B<sub>5</sub>N<sub>10</sub>) nanocage which has been decorated with aluminum (Al), carbon (C) and silicon(Si) atoms. The results denote that (NO,NO<sub>2</sub>,N<sub>2</sub>O) ↔ (Al, C, Si)–B<sub>4</sub>N<sub>10</sub> are stable complexes with the most stable adsorption site being the center of the cage ring. The partial density of states can estimate a certain charge assembly between gas molecules and (Al, C, Si)–B<sub>4</sub>N<sub>10</sub> which indicates the competition among dominant complexes of metallic (Al), nonmetallic (C), metalloid/semiconductor (Si). Based on nuclear quadrupole resonance analysis, carbon-doped on B<sub>4</sub>N<sub>10</sub> has shown the lowest fluctuation in electric potential and the highest negative atomic charge including 0.1190, 0.1844, and 0.1312 coulomb in NO ↔ C–B<sub>4</sub>N<sub>10</sub>, NO<sub>2</sub> in NO ↔ C–B<sub>4</sub>N<sub>10</sub>, and N<sub>2</sub>O in NO ↔ C–B<sub>4</sub>N<sub>10</sub>, respectively, can be an appropriate option with the highest tendency for electron accepting in the adsorption process. Furthermore, the reported results of nuclear magnetic resonance spectroscopy have exhibited that the efficiency of electron accepting for doping atoms on the (Al, C, Si)–B<sub>4</sub>N<sub>10</sub> through gas molecules adsorption can be ordered as: Si > Al <span>( gg )</span> C that indicates the power of covalent bond between aluminum, carbon, silicon and these NO, NO<sub>2</sub>, N<sub>2</sub>O towards toxic gas removal from air. In fact, the adsorption of gas molecules can introduce spin polarization on the (Al, C, Si)–B<sub>4</sub>N<sub>10</sub> which indicates that these surfaces might be applied as magnetic scavenging surface as a gas detector. Regarding infrared spectroscopy, doped nanocages of C–B<sub>4</sub>N<sub>10</sub> and Si–B<sub>4</sub>N<sub>10</sub> for NO, Al–B<sub>4</sub>N<sub>10</sub> and Si–B<sub>4</sub>N<sub>10</sub> for NO<sub>2</sub>, Al–B<sub>4</sub>N<sub>10</sub> and C–B<sub>4</sub>N<sub>10</sub> for N<sub>2</sub>O, respectively, have the most fluctuations and the highest adsorption tendency for gas molecules which can address specific questions on the individual effect of charge carriers (gas molecule-nanocage), as well as doping atoms on the overall structure. Based on the results of <span>(Delta G_{{{text{ads}}}}^{{text{o}}})</span> amounts in this research, the maximum efficiency of Al, C, Si atoms doping of B<sub>5</sub>N<sub>10</sub> for gas molecules adsorption depends on the covalent bond between NO, NO<sub>2</sub>, N<sub>2</sub>O molecules and (Al, C, Si)–B<sub>4</sub>N<sub>10</sub> as a potent sensor for air pollution removal.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1177 - 1198"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. N. El. Boumezrag, K. Almi, S. Lakel, H. Touhami
{"title":"A Mini Review on Synthesis and Characterization of Copper Oxide Some Properties and Potential Applications","authors":"M. N. El. Boumezrag, K. Almi, S. Lakel, H. Touhami","doi":"10.1134/S1990793124700313","DOIUrl":"10.1134/S1990793124700313","url":null,"abstract":"<p>This review focuses on the synthesis and Characterization of <i>p</i>-type metal-oxide (<i>p</i>-type CuO) semiconductor thin films, used for chemical-sensing applications. <i>p</i>-Type CuO thin film exhibit several advantages over <i>n</i>-type metal-oxide, including a higher catalytic effect, low humidity dependence, and improved recovery speed. However, the sensing performance of CuO thin film is strongly related to the intrinsic physicochemical properties of the material and their thickness. The latter is heavily dependent on synthesis techniques. Many techniques used for growing <i>p</i>-type CuO thin film are reviewed herein. Copper oxide is called a multifunctional material by dint of possessing a broad range of chemical and physical properties that are often highly sensitive to changes in processing parameters, although, extensive research and development, the optimization of the processing parameters are still in full development until today. Where, the overall research revealed that the different properties of copper oxide based on the experimental conditions. In this extensive review, we focus more on discussing the effect of major synthesis processing parameters such as precursor solution, annealing temperature, and thickness of the nanomaterial, which various researchers have obtained. These factors are critical overviewed, evaluated, and compared.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"873 - 894"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Influence of Air Gap on the Thermal Response Violence of Pressed Polymer Bonded Explosive Charge in Slow Cook-Off Experiment","authors":"Z. Han, C. Wu, J. Wang, B. Wang, M. Wang","doi":"10.1134/S1990793124700337","DOIUrl":"10.1134/S1990793124700337","url":null,"abstract":"<p>To study the slow cook-off response characteristics of the charges with HMX-based pressed thermobaric explosives influenced by charge air gap, experiments considering different clearance ratio were carried out. The corresponding thermal reaction process was simulated by a commercial software Fluent developed by America ANSYS Inc. The results indicated that the clearance ratio had a significant influence on the response violence of the charge. The response violence was burn or combustion while charge side clearance was less than 12.11%, but the response state turned out to be deflagration or explosion when the charge side clearance became larger. With a fixed charge condition, the critical charge side clearance ratio was approximately between 12.11 and 17.35%. The numerical simulation results indicated that the initial high temperature zone was located in the edges of the explosive columns in contact with the shell, which could shift toward to the center of the charge according to the increase of the clearance ratio. The shift process strongly depended on the contact conditions. The safety of pressed charge can be optimized by eliminating charge clearance.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1077 - 1089"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. K. Ismail, R. A. Omer, Y. H. Azeez, K. A. Omar, H. F. Alesary
{"title":"Synthesis, Characterization, and Computational Insights Into the Conductive Poly(p-aminophenol)","authors":"H. K. Ismail, R. A. Omer, Y. H. Azeez, K. A. Omar, H. F. Alesary","doi":"10.1134/S1990793124700477","DOIUrl":"10.1134/S1990793124700477","url":null,"abstract":"<p>In this work, poly(<i>p</i>-aminophenol), a conductive polymer, was synthesized via chemical polymerization from the monomer of <i>p</i>-aminophenol in a basic aqueous medium using ammonium persulfate as the initiator. The polymer’s properties were assessed using ultraviolet-visible spectroscopy, fourier transform infrared, thermogravimetric analysis, scanning electron microscope, and X-ray diffraction methods. The fourier transform infrared results show a peak such as the robust signal at 3126 cm<sup>–1</sup>, corresponding to O–H vibrations associated with phenoxide ion existence in the polymer. The presence of N–H stretching vibration of an aromatic amine was affirmed by the peak at 2989 cm<sup>–1</sup>. The presence of a strong, broad peak at 2θ of 17.52° indicated amorphous behavior in poly(<i>p</i>-aminophenol). The weight loss was shown at 87, 276 and 517°C due to moisture removal, anion removal, and the degradation of polymer. Scanning electron microscopy showed sphere-like particles in poly(<i>p</i>-aminophenol) surface morphology. The electronic properties of poly(<i>p</i>-aminophenol) were investigated using quantum chemical calculations at the density functional theory level of theory. Density functional theory calculations were performed using two functionals, namely B3LYP and wB97XD, in combination with the 6-311+G(2<i>d</i>, <i>p</i>) basis set. These calculations aimed to determine various quantum chemical parameters, conduct natural bond orbital analysis, assess topological parameters, investigate nonlinear optical properties, and evaluate thermal properties. This approach balanced computational efficiency and accuracy to investigate reactivity, stability, charge transfer, optical properties, and thermal behavior. The calculations revealed significant changes in the reactivity and stability of the studied compound as it transitioned from the non-protonated to the protonated state, analyzed in both the gas phase and various aqueous environments. Furthermore, the presence of strong hydrogen bonds and limited nonlinear optical potential suggest the material may be suitable for applications beyond nonlinear optics. Additionally, the calculations explored static thermodynamic properties, including heat capacity, entropy, and enthalpy, highlighting their temperature-dependent behaviors. Poly(<i>p</i>-aminophenol) has excellent thermal stability and robust hydrogen bonding. However, its low nonlinear optical potential indicates its usefulness for uses other than nonlinear optics.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1148 - 1165"},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}