Agronomy最新文献

筛选
英文 中文
Shaping Soil Properties and Yield of Cereals Using Cover Crops under Conservation Soil Tillage 保护性耕作下利用覆盖作物塑造土壤特性和谷物产量
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092104
Edward Wilczewski, Irena Jug, Ewa Szpunar-Krok, Mariola Staniak, Danijel Jug
{"title":"Shaping Soil Properties and Yield of Cereals Using Cover Crops under Conservation Soil Tillage","authors":"Edward Wilczewski, Irena Jug, Ewa Szpunar-Krok, Mariola Staniak, Danijel Jug","doi":"10.3390/agronomy14092104","DOIUrl":"https://doi.org/10.3390/agronomy14092104","url":null,"abstract":"The aim of this review was to collect current results on the effect of different plants grown as winter and summer cover crops (CC) on the physical, chemical, and biological properties of soil and on the yield of cereal crops grown in a site with CC, using conservation soil tillage. The analyzed studies indicate that CC usually have a positive impact on the physical and biological properties of the soil. Regardless of the plant species used as CC, we can expect an increase in the number of soil microorganisms and an improvement in the activity of soil enzymes. This effect is particularly beneficial in the case of reduced tillage systems. Mixing CC biomass with the topsoil loosens compacted soils and, in the case of light, sandy soils, increasing the capacity of the sorption complex. The size and composition of CC biomass and weather conditions during the vegetation period and during the covering of the soil with plant biomass are of great importance for improving the chemical properties of the soil. A beneficial effect of CC, especially legumes, on the content of the mineral nitrogen in the topsoil is usually observed. Sometimes, an increase in the content of available forms of potassium (K) and/or phosphorus (P) is also achieved. The effect of CC on the content of soil organic carbon (C), total nitrogen (N), or soil pH is less common. CC used in reduced tillage systems can significantly improve the yield and quality of cereal grain, especially when legumes are used as CC in low-fertility soil conditions and at low fertilization levels. However, non-legumes can also play a very positive role in shaping soil properties and improving cereal yield.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Microalgae Fertilizer on Soil Water Conservation and Soil Improvement: Yield and Quality of Potted Tomatoes 微藻肥对水土保持和土壤改良的影响盆栽番茄的产量和质量
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092102
Chao Li, Yaqi Liang, Qingfeng Miao, Xiang Ji, Pengcheng Duan, Dong Quan
{"title":"The Influence of Microalgae Fertilizer on Soil Water Conservation and Soil Improvement: Yield and Quality of Potted Tomatoes","authors":"Chao Li, Yaqi Liang, Qingfeng Miao, Xiang Ji, Pengcheng Duan, Dong Quan","doi":"10.3390/agronomy14092102","DOIUrl":"https://doi.org/10.3390/agronomy14092102","url":null,"abstract":"We aim to study the impact of microalgae fertilizer on soil nutrients, water conservation and crop yield and quality while also determining the optimal ratio of microalgae fertilizer to chemical fertilizer. Using “Xinoufen No.9” tomatoes as the test subject, we conducted pot experiments with four different treatments: control with 100% chemical fertilizer (CK), T1 (25% microalgae fertilizer + 75% regular chemical fertilizer), T2 (75% microalgae fertilizer + 25% regular chemical fertilizer) and T3 (100% microalgae fertilizer). The results show that an increased application of microalgae fertilizer enhanced the soil organic matter, ammonium nitrogen, available phosphorus and potassium content. T3 showed the most improvement followed by T2. The co-application of microalgae fertilizer with chemical fertilizer can significantly increase the stem girth, plant height and yield of tomatoes. At the same time, microalgae fertilizer effectively regulates leaf stomatal conductance, promoting tomato leaf respiration. As the stomatal conductance increases, the transpiration rate and net photosynthesis rate of all treatments improve, followed by a decline in intercellular CO2 concentration, with T2 exhibiting the best performance. Among all treatments, T2 treatment yielded the highest per-plant production (0.630 kg), followed by T3 (0.521 kg). This is because the microalgae fertilizer promotes the distribution of photosynthetic products to the fruit, enhancing the yield and quality of tomatoes. Additionally, the microalgae fertilizer also increases the content of soluble sugars, soluble protein, vitamin C and lycopene in the fruit while reducing the nitrate content. Compared to the control group CK, T2 increases the content of soluble sugars, vitamins and lycopene by 26.74%, 39.29% and 158.31%, respectively. Microalgae fertilizer also helps to improve soil water and thermal conditions, enhancing the water-use efficiency of tomatoes. Compared to CK, the water-use efficiency of T2 treatment increased by 54.05%. Correlation analysis indicates that water and fertilizer factors significantly affect tomato yield, with a correlation exceeding 70%. The net photosynthesis and transpiration rates significantly influence fruit quality, with correlations above 80%. By applying microalgae fertilizer, the efficiency of water and fertilizer use can be effectively improved, thus achieving the goal of water conservation and quality enhancement. Therefore, through comprehensive analysis, using the membership function method of indicators such as soil environment, crop yield, fruit quality and water-use efficiency, it is concluded that T2 is the optimal fertilization treatment. This study provides theoretical support for the application of microalgae biofertilizer technology in the cultivation of tomatoes and other vegetables in the northern, cold and arid regions.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wood- and Manure-Derived Biochars Reduce Antibiotic Residues and Shift Antibiotic Resistance Genes and Microbial Communities in Manure Applied Forage–Soil Systems 木质和粪便制成的生物秸秆可减少抗生素残留并改变粪便施用草料-土壤系统中的抗生素耐药基因和微生物群落
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092100
Gyucheol Choi, Jeff A. Brady, Olabiyi Obayomi, Emily Green, Caroly Leija, Kristin Sefcik, Daisy Gonzalez, Cosette B. Taggart, James P. Muir, Eunsung Kan
{"title":"Wood- and Manure-Derived Biochars Reduce Antibiotic Residues and Shift Antibiotic Resistance Genes and Microbial Communities in Manure Applied Forage–Soil Systems","authors":"Gyucheol Choi, Jeff A. Brady, Olabiyi Obayomi, Emily Green, Caroly Leija, Kristin Sefcik, Daisy Gonzalez, Cosette B. Taggart, James P. Muir, Eunsung Kan","doi":"10.3390/agronomy14092100","DOIUrl":"https://doi.org/10.3390/agronomy14092100","url":null,"abstract":"The increasing use of antibiotics in livestock poses environmental risks, leading to contamination of agricultural soils and propagation of microbial antibiotic-resistant genes (ARGs). This study examined the impacts of wood- and manure-derived biochar (BC) on antibiotic residues, ARGs, and microbial communities in sandy loam and clay loam soils amended with manure in Cynodon dactylon pastures. We hypothesized that BC amendments would influence the degradation of antibiotics and the structure of microbial communities based on their physicochemical properties and soil types. Our results demonstrated that wood BC reduced the concentrations of tetracycline and sulfonamides, particularly in sandy loam soil, due to its larger surface area and hydrophobic properties. In contrast, manure BC provided additional nutrients and supported atmospheric nitrogen-fixing microbial groups, especially in clay loam soil, while exhibiting variable efficiency in reducing antibiotic residues due to its lower surface area and higher ash content. These findings underscore the differential impacts of each BC type, emphasizing the need for tailored BC applications based on soil type to effectively mitigate antibiotic contamination and promote sustainable agricultural practices. In conclusion, wood BC was more effective in enhancing soil health by reducing antibiotic residues and improving microbial diversity, particularly in sandy loam soils, while manure BC was beneficial for nutrient cycling in clay loam soils.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sufficient Light Intensity Is Required for the Drought Responses in Sweet Basil (Ocimum basilicum L.) 甜罗勒(Ocimum basilicum L.)的干旱反应需要足够的光照强度
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092101
Gyeongmin Lee, Jongyun Kim
{"title":"Sufficient Light Intensity Is Required for the Drought Responses in Sweet Basil (Ocimum basilicum L.)","authors":"Gyeongmin Lee, Jongyun Kim","doi":"10.3390/agronomy14092101","DOIUrl":"https://doi.org/10.3390/agronomy14092101","url":null,"abstract":"Various environmental factors not only affect plant growth and physiological responses individually but also interact with each other. To examine the impact of light intensity on the drought responses of sweet basil, plants were subjected to maintenance of two substrate volumetric water contents (VWC) using a sensor-based automated irrigation system under two distinct light intensities. The VWC threshold was set to either a dry (0.2 m3·m−3) or sufficiently wet condition (0.6 m3·m−3) under low (170 μmol·m−2·s−1) or high light intensities (500 μmol·m−2·s−1). The growth and physiological responses of sweet basil (Ocimum basilicum L.) were observed over 21 days in the four treatment groups, where the combination of two environmental factors was analyzed. Under high light intensity, sweet basil showed lower Fv/Fm and quantum yield of PSII, compared to that under low light intensity, regardless of drought treatment. Fourteen days after drought treatment under high light intensity, stomatal conductance and the photosynthetic rate significantly reduced. Whereas plants under low light intensity showed similar stomatal conductance and photosynthetic rates regardless of drought treatment. Assessment of shoot and root dry weights revealed that plant growth decline caused by drought was more pronounced under high light intensity than under low light intensity. Thus, sweet basil showed significant declines in growth and physiological responses owing to drought only under high light intensity; no significant changes were observed under low light intensity.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils 利用伪彩色地图和机器学习方法估算土壤的长期含盐量
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092103
Ravil I. Mukhamediev, Alexey Terekhov, Yedilkhan Amirgaliyev, Yelena Popova, Dmitry Malakhov, Yan Kuchin, Gulshat Sagatdinova, Adilkhan Symagulov, Elena Muhamedijeva, Pavel Gricenko
{"title":"Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils","authors":"Ravil I. Mukhamediev, Alexey Terekhov, Yedilkhan Amirgaliyev, Yelena Popova, Dmitry Malakhov, Yan Kuchin, Gulshat Sagatdinova, Adilkhan Symagulov, Elena Muhamedijeva, Pavel Gricenko","doi":"10.3390/agronomy14092103","DOIUrl":"https://doi.org/10.3390/agronomy14092103","url":null,"abstract":"Soil salinity assessment methods based on remote sensing data are a common topic of scientific research. However, the developed methods, as a rule, estimate relatively small areas of the land surface at certain moments of the season, tied to the timing of ground surveys. Considerable variability of weather conditions and the state of the earth surface makes it difficult to assess the salinity level with the help of remote sensing data and to verify it within a year. At the same time, the assessment of salinity on the basis of multiyear data allows reducing the level of seasonal fluctuations to a considerable extent and revealing the statistically stable characteristics of cultivated areas of land surface. Such an approach allows, in our opinion, the processes of mapping the salinity of large areas of cultivated lands to be automated considerably. The authors propose an approach to assess the salinization of cultivated and non-cultivated soils of arid zones on the basis of long-term averaged values of vegetation indices and salinity indices. This approach allows revealing the consistent relationships between the characteristics of spectral indices and salinization parameters. Based on this approach, this paper presents a mapping method including the use of multiyear data and machine learning algorithms to classify soil salinity levels in one of the regions of South Kazakhstan. Verification of the method was carried out by comparing the obtained salinity assessment with the expert data and the results of laboratory tests of soil samples. The percentage of “gross” errors of the method, in other words, errors when the predicted salinity class differs by more than one position compared to the actual one, is 22–28% (accuracy is 0.78–0.72). The obtained results allow recommending the developed method for the assessment of long-term trends of secondary salinization of irrigated arable land in arid areas.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Regulation for Heat Stress Adaptation in Plants: New Horizons for Crop Improvement under Climate Change 植物适应热胁迫的表观遗传调控:气候变化下作物改良的新视野
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092105
Qiang Jin, Muzafaruddin Chachar, Aamir Ali, Zaid Chachar, Pingxian Zhang, Adeel Riaz, Nazir Ahmed, Sadaruddin Chachar
{"title":"Epigenetic Regulation for Heat Stress Adaptation in Plants: New Horizons for Crop Improvement under Climate Change","authors":"Qiang Jin, Muzafaruddin Chachar, Aamir Ali, Zaid Chachar, Pingxian Zhang, Adeel Riaz, Nazir Ahmed, Sadaruddin Chachar","doi":"10.3390/agronomy14092105","DOIUrl":"https://doi.org/10.3390/agronomy14092105","url":null,"abstract":"Global warming poses a significant threat to plant ecosystems and agricultural productivity, primarily through heat stress (HS), which disrupts photosynthesis, respiration, and overall plant metabolism. Epigenetic modifications, including DNA methylation, histone modifications, and RNA modifications, enable plants to dynamically and heritably adjust gene expression in response to environmental stressors. These mechanisms not only help plants survive immediate stress but also confer stress memory, enhancing their resilience to future HS events. This review explores the mechanisms underlying plant thermotolerance, emphasizing the critical role of epigenetic regulation in adapting to HS. It also highlights how DNA methylation modulates stress-responsive genes, histone modifications facilitate transcriptional memory, and RNA modifications influence mRNA stability and translation. Recent advancements in genome editing technologies, such as CRISPR-Cas9, have enabled precise modifications of epigenetic traits, offering new avenues for breeding climate-resilient crops. The integration of these modern tools with traditional breeding methods holds significant promise for developing crops with enhanced thermotolerance. Despite the potential, challenges such as the stability and heritability of epigenetic marks and the complex interplay between different epigenetic modifications need to be addressed. Future research should focus on elucidating these interactions and identifying reliable epigenetic markers for selection. By leveraging the insights gained from epigenetic studies, we can develop innovative breeding strategies to improve crop resilience and ensure sustainable agricultural productivity in the face of global warming. This review underscores the importance of epigenetic regulation in plant adaptation to heat stress and its potential to revolutionize crop breeding, offering a pathway to secure food production and sustainability under changing climatic conditions.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Factors Affecting the Humus Horizon Thickness in the Black Soil Region of Liaoning Province, China 中国辽宁省黑土区腐殖质层厚度影响因素研究
Agronomy Pub Date : 2024-09-15 DOI: 10.3390/agronomy14092106
Ying-Ying Jiang, Jia-Yi Tang, Zhong-Xiu Sun
{"title":"Study on the Factors Affecting the Humus Horizon Thickness in the Black Soil Region of Liaoning Province, China","authors":"Ying-Ying Jiang, Jia-Yi Tang, Zhong-Xiu Sun","doi":"10.3390/agronomy14092106","DOIUrl":"https://doi.org/10.3390/agronomy14092106","url":null,"abstract":"Understanding the spatial variability and driving mechanisms of humus horizon thickness (HHT) degradation is crucial for effective soil degradation prevention in black soil regions. The study compared ordinary kriging interpolation (OK), inverse distance weighted interpolation (IDW), and regression kriging interpolation (RK) using mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and relative RMSE to select the most accurate model. Environmental variables were then integrated to predict HHT characteristics. Results indicate that: (1) RK was superior to OK and IDW in characterizing HHT with the smallest ME (11.45), RMSE (14.98), MAE (11.45), and RRMSE (0.44). (2) The average annual temperature (0.29), precipitation (0.27), and digital elevation model (DEM) (0.21) were the primary factors influencing the spatial variability of HHT. (3) The HHT exhibited notable variability, with an increasing trend from the southeast towards the central and northern directions, being the thinnest in the southeast. It was thicker in the northeast and southwest regions, thicker but less dense along the southern Bohai coast, thicker yet sporadically distributed in the northwest (especially Chaoyang and Fuxin), and thick with aggregated distribution over a smaller area in the northeastern direction (e.g., Tieling). These findings provide a scientific basis for accurate soil management in Liaoning Province.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Field to Model: Determining EROSION 3D Model Parameters for the Emerging Biomass Plant Silphium perfoliatum L. to Predict Effects on Water Erosion Processes 从实地到模型:确定新兴生物质植物 Silphium perfoliatum L. 的 EROSION 3D 模型参数,以预测对水蚀过程的影响
Agronomy Pub Date : 2024-09-14 DOI: 10.3390/agronomy14092097
Tobias Koch, Peter Aartsma, Detlef Deumlich, Peter Chifflard, Kerstin Panten
{"title":"From Field to Model: Determining EROSION 3D Model Parameters for the Emerging Biomass Plant Silphium perfoliatum L. to Predict Effects on Water Erosion Processes","authors":"Tobias Koch, Peter Aartsma, Detlef Deumlich, Peter Chifflard, Kerstin Panten","doi":"10.3390/agronomy14092097","DOIUrl":"https://doi.org/10.3390/agronomy14092097","url":null,"abstract":"The agricultural production of maize (Zea mays L.) increases the risk of water erosion. Perennial crops like cup plant (Silphium perfoliatum L.) offer a sustainable alternative to produce biomass for biogas plants. The assessment of soil conservation measures requires calibrated soil erosion models that spatially identify soil erosion processes. These support decision-making by farmers and policymakers. Input parameters for the physically based soil erosion model EROSION 3D for cup plant cultivation were established in a field study. Rainfall simulation experiments were conducted to determine the model input parameter’s skinfactor and surface roughness. The results showed a reduction of soil erosion and higher infiltration rates for cup plant resulting in higher skinfactors of 11.5 in June and 0.75 post-harvest (cup plant) compared to 1.2 in June and 0.21 post-harvest (maize). With the extended parameter catalogue of EROSION 3D for cup plant cultivation model simulations were conducted for a rainfall event in June (64 mm). The sediment budget would have been reduced by 92.6% through the growth of cup plant in comparison to conventionally grown maize. Perennial cup plant can, therefore, contribute to achieving the targets outlined in the European Green Deal by reducing soil erosion and enhancing soil health.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous Substances Improved Salt Tolerance in Cotton 外源物质提高了棉花的耐盐性
Agronomy Pub Date : 2024-09-14 DOI: 10.3390/agronomy14092098
Zhiduo Dong, Ajing Meng, Tong Qi, Jian Huang, Huicong Yang, Aziguli Tayir, Bo Wang
{"title":"Exogenous Substances Improved Salt Tolerance in Cotton","authors":"Zhiduo Dong, Ajing Meng, Tong Qi, Jian Huang, Huicong Yang, Aziguli Tayir, Bo Wang","doi":"10.3390/agronomy14092098","DOIUrl":"https://doi.org/10.3390/agronomy14092098","url":null,"abstract":"Abstract: Soil salinization is a major limiting factor for cotton growth in Southern Xinjiang. Studying technologies and mechanisms to improve cotton salt tolerance is of significant importance for the development and utilization of saline–alkaline land. In this study, ‘Xinluzhong 40’ cotton was used as the material, and 150 mmol·L−1 sodium chloride (NaCl) and 1.2% natural saline–alkaline soil extract were employed to simulate single-salt (SS) and mixed-salt (MS) stresses, respectively. The effects of different exogenous substances (sodium nitrophenolate, 24-epibrassinolide, and γ-aminobutyric acid) on the growth characteristics of cotton under salt stress were investigated. The results show that: (1) Under salt stress, the height and biomass of cotton (50 d old) were reduced. Both SS and MS stresses led to increased superoxide dismutase (SOD) activity, elevated proline (PRO) content (with an increase of 50.01% and no significant difference), and increased malondialdehyde (MDA) content (with increases of 63.14% and 32.42%, respectively). At the same time, catalase (CAT) activity decreased, Na⁺ and Cl⁻ contents increased, K⁺ content decreased, and the K⁺/Na⁺ ratio was reduced. (2) Application of sodium nitrophenolate (S), 24-epibrassinolide (E), and γ-aminobutyric acid (G) significantly improved SOD activity and PRO content while reducing MDA content (decreased by 29.33%, 25.48%, and 30.47% compared to SS treatment; and 1.68%, 5.21%, and 5.49% compared to MS treatment, respectively). They also increased CAT activity (increased by 75.97%, 103.24%, and 80.79% compared to SS treatment; and 91.06%, 82.43%, and 119.68% compared to MS treatment, respectively) and K⁺/Na⁺ ratio (increased by 57.59%, 66.35%, and 70.50% compared to SS treatment; and 38.31%, 42.97%, and 66.66% compared to MS treatment, respectively), reduced Cl⁻ content, and promoted increases in plant height and biomass. The effects of exogenous substances on antioxidant capacity and ion balance under salt stress were significant, particularly under SS stress. (3) Principal component analysis revealed that under SS and MS stresses, principal component 1 mainly reflects cotton’s antioxidant capacity, with SOD, CAT, and PRO having high weights; principal component 2 mainly reflects cotton’s ion balance and nutrient absorption, with root Na⁺, stem Na⁺, leaf Na⁺, root K⁺, and root Cl⁻ having high weights. These findings highlight the potential of exogenous substances to improve cotton salt tolerance and provide scientific evidence for cotton cultivation on saline–alkaline land, offering new insights into cultivation techniques from an applied research perspective.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Discrete Element Method-Based Design and Optimization of the Key Components of a Spoon-Wheel Spinach Seed-Metering Device 基于工程离散元法的勺轮式菠菜种子计量装置关键部件的设计与优化
Agronomy Pub Date : 2024-09-14 DOI: 10.3390/agronomy14092096
Gang Zheng, Bing Qi, Wenyi Zhang, Weixing Shao, Lei Zhang, Yunxia Wang, Youqiang Ding
{"title":"Engineering Discrete Element Method-Based Design and Optimization of the Key Components of a Spoon-Wheel Spinach Seed-Metering Device","authors":"Gang Zheng, Bing Qi, Wenyi Zhang, Weixing Shao, Lei Zhang, Yunxia Wang, Youqiang Ding","doi":"10.3390/agronomy14092096","DOIUrl":"https://doi.org/10.3390/agronomy14092096","url":null,"abstract":"In view of issues affecting manual on-demand sowing of spinach, such as high working intensity, low seeding efficiency, and high cost, a mechanized precision seeding device for spinach seeds is proposed, based on a spoon-wheel including a combined cell with two intersecting surfaces. The key structure was designed, and motion analysis was conducted employing SolidWorks software (2022). Additionally, the seeding process was simulated using EDEM simulation software (2022). The number of spoons, the radius of the spoons, and the speed of the seed wheel were chosen as the influencing factors, while the qualified index, reseeding index, and missing index were utilized as the evaluation indexes. A response surface method test based on the Box–Behnken design was carried out, and the test results were analyzed to obtain the optimal parameter combination for the seed-metering device. The field test results showed that when the rotation speed was 18 rpm, the radius of each seed spoon was 2.5 mm, and the number of seed spoons was 50, the average qualified index was 90.89%, the reseeding index was 8.22%, and the missed seeding index was 0.89%. The test results satisfy the technical production requirements for spinach seed sowing.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信