{"title":"Antioxidant and Antibiofilm Activity of Laccase-Mediated Oxidized Products of Ferulic Acid","authors":"Monica Ramasamy, Meenalokshini Ponnusamy, Sharulatha Venugopal, Aishwarya Vetrivel, Rajeswari Murugesan","doi":"10.1134/S1068162024060177","DOIUrl":"10.1134/S1068162024060177","url":null,"abstract":"<p><b>Objective:</b> The enzymatic oxidation of ferulic acid was carried out to improve their solubility and stability and provide new properties. <b>Methods:</b> The oxidation of ferulic acid was carried out using laccase from <i>Trametes versicolor</i> in sodium acetate buffer of pH 5.0 at room temperature. The two oxidized products were fractionated using column chromatography. These oxidized products, P1 and P2, demonstrated good antibiofilm and antioxidant activity compared to ferulic acid. P1 exhibited higher antibiofilm and antioxidant activity than P2. These products were characterized using FT-IR and NMR spectroscopies. <b>Results and Discussion:</b> A polymeric form of ferulic acid was synthesized using the enzyme laccase and fractionated using two different solvents. These fractions were purified, dried, and evaluated for antibiofilm and antioxidant potential. P1 and P2 have MIC of 125 µg against <i>S. aureus</i>. Sub-MIC concentrations were used for antibiofilm assays. The results suggested that P1 and P2 have good antibiofilm activity than ferulic acid. <b>Conclusions:</b> The predicted structure of P1 was a dimer, and P2 was synthesized as a trimer. These findings suggested that, when compared to the trimer, the dimer product of ferulic acid oxidation has good antibiofilm and antioxidant activity.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2529 - 2539"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shantaben K. Kangad, Sachin M. Sitapara, V. N. Patolia
{"title":"Expeditious Synthesis, Characterization, and Antimicrobial Assessment of Thiazole Derivatives","authors":"Shantaben K. Kangad, Sachin M. Sitapara, V. N. Patolia","doi":"10.1134/S1068162024060116","DOIUrl":"10.1134/S1068162024060116","url":null,"abstract":"<p><b>Objective:</b> This study aims to explore the antimicrobial potential of thiazole derivatives and their significance as promising pharmaceutical agents, given their diverse therapeutic applications, including anticancer, antibacterial, antiviral, antihypertensive, and antifungal activities. <b>Methods:</b> An efficient synthetic route was established to synthesize a range of ethyl(<i>E</i>)-2-(4-hydroxy-3-((phenylimino)methyl)phenyl)-5-methylthiazole-4-carboxylate derivatives (<b>VIIa–VIIj</b>). Structural elucidation of these newly synthesized compounds utilized advanced techniques, such as <sup>1</sup>H, <sup>13</sup>C NMR, FT-IR spectroscopy, mass spectrometry, and elemental analysis, ensuring accurate identification and characterization. Furhter, all the synthesized compounds were evaluated for their antimicrobial potential against various bacterial and fungal strains. <b>Results and Discussion:</b> In the results, it is found that compounds (<b>VIIa</b>), (<b>VIId</b>), (<b>VIIe</b>), and (<b>VIIg</b>) shows good antibacterial activity while compounds (<b>VIIb</b>) and (<b>VIIc</b>) shows good antifungal activity, suggesting their possible utility in clinical contexts. <b>Conclusions:</b> This research provides valuable insights into the therapeutic potential of thiazole derivatives, paving the way for future investigations into their clinical implications for addressing microbial challenges.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2182 - 2190"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. V. Shmendel, A. O. Buyanova, O. V. Markov, N. G. Morozova, M. A. Zenkova, M. A. Maslov
{"title":"New Cationic Carbohydrate-Modified Amphiphiles and Liposomes for Effective Delivery of Short Nucleic Acids into Eukaryotic Cells","authors":"E. V. Shmendel, A. O. Buyanova, O. V. Markov, N. G. Morozova, M. A. Zenkova, M. A. Maslov","doi":"10.1134/S1068162024060293","DOIUrl":"10.1134/S1068162024060293","url":null,"abstract":"<p><b>Objective:</b> The development of systems for targeted delivery of nucleic acids (NAs) is necessary to ensure their selective transport to the site of therapeutic action. The aim of this work was to synthesize carbohydrate-modified amphiphiles containing a spermine residue, required for compaction and binding to NAs, as well as a diglyceride residue for forming lipid aggregates and a carbohydrate residue (lactose or D-mannose) for improving the hydrophilic–lipophilic balance of the molecule. The lactose residue can serve as a targeting ligand for NA delivery into liver hepatocytes, and the D-mannose residue can perform specific NA transport into dendritic cells and macrophages. <b>Methods:</b> New carbohydrate-modified cationic amphiphiles were obtained by organic synthesis, and their aqueous dispersions or cationic liposomes were prepared. Cytotoxicity of the cationic amphiphiles and liposomes was performed using the MTT assay on HEK 293 and BHK cell lines in the absence of fetal bovine serum (FBS). Complexes of the cationic amphiphiles or liposomes with NAs (FITC-ODN, pDNA, and siRNA) were formed at various component ratios (N/P), and the efficiency of transfection in HEK 293 and BHK IR-780 cells was assessed by flow cytometry. <b>Results and Discussion:</b> New cationic amphiphiles containing lactose or D-mannose residues were synthesized. The cationic amphiphiles, whatever the structure of their carbohydrate residue, effectively deliver a short FITC-ODN into HEK293 cells in the presence of FBS, and are nontoxic. The cationic liposome formed by the lactose-containing amphiphile and 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphoethanolamine (DOPE) successfully delivers short NAs (FITC-ODN and siRNA) both in the absence and in the presence of serum in the culture media. <b>Conclusions:</b> The obtained carbohydrate-modified cationic amphiphiles, both individually and as component of cationic liposomes, hold promise to be used as systems for the delivery of short nucleic acids in further development of drugs for gene therapy.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2379 - 2396"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sachin M. Sitapara, Jignesh H. Pandya, Shantaben K. Kangad, Deepika Maliwal, Raghuvir R. S. Pissurlenkar, Dharmesh K. Katariya, Sandeep G. Chovatiya
{"title":"Cu-Metal Catalyst Based Click Chemistry: Synthesis, Characterization, Molecular Docking, and Antibacterial Evaluation of Triazole Derivatives","authors":"Sachin M. Sitapara, Jignesh H. Pandya, Shantaben K. Kangad, Deepika Maliwal, Raghuvir R. S. Pissurlenkar, Dharmesh K. Katariya, Sandeep G. Chovatiya","doi":"10.1134/S1068162024060165","DOIUrl":"10.1134/S1068162024060165","url":null,"abstract":"<p><b>Objective:</b> Triazole, also known as pyrrdiazole, is a five-membered nitrogen-containing heterocyclic compound composed of two carbon atoms and three nitrogen atoms. Triazole analogs have garnered significant attention due to their extensive applications in medicinal chemistry and their diverse range of biological activities. <b>Methods:</b> With this consideration, we synthesized a diverse library of novel triazolopyridine-based 1,2,3-triazole derivatives (<b>Xa–Xh</b>) by employing Cu alkyne-azide cycloaddition methodology and confirmed the structures by various spectroscopic techniques including mass spectrometry, FT-IR, <sup>1</sup>H, and <sup>13</sup>C NMR spectroscopy. Further, the synthesized compounds were evaluated for their in silico and in vitro antibacterial potential against various Gram-positive and Gram-negative bacterial strains. <b>Results and Discussion:</b> In the results it is found that compound (<b>Xa</b>) exhibited superior antibacterial activity against <i>S. aureus</i> while compound (<b>Xd</b>) demonstrated comparable activity against <i>E. coli</i> when compared to standard drugs. Molecular docking study also indicated that compounds (<b>Xa</b>) and (<b>Xd</b>) possess the capability to bind to the active sites of <i>S. aureus</i>, <i>E. coli</i>, and <i>P. aeruginosa</i>. <b>Conclusions:</b> All this findings suggested (<b>Xa</b>) and (<b>Xd</b>) as promising alternatives for combating bacterial infections.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2473 - 2482"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Lukacheva, A. I. Gorb, A. S. Musorina, D. V. Kriger, G. G. Poljanskaya, D. E. Bobkov
{"title":"Changes in the Heterogeneity of MSC Subpopulations During Replicative Senescence as Seen from Single-Cell Speed Measurements","authors":"A. V. Lukacheva, A. I. Gorb, A. S. Musorina, D. V. Kriger, G. G. Poljanskaya, D. E. Bobkov","doi":"10.1134/S106816202408020X","DOIUrl":"10.1134/S106816202408020X","url":null,"abstract":"<p><b>Objective:</b> To examine the distribution of motility metrics of human mesenchymal stem cells (MSCs) and immortalized cell line in long-term 2D culture. <b>Methods:</b> We used single-cell motility tracking to analyze changes in the motility metrics (average speed, distance, track length). The study compared three cell lines: two lines of MSCs that undergo replicative senescence (DF-2, MSCWJ-1), and a third line of immortalized fibroblast-like cells with an unlimited lifespan (XP12RO). <b>Results and Discussion:</b> The results revealed that replicative senescence in MSCs is associated with an alteration in the distribution of observed motility metrics, which is expressed as a change from a bimodal distribution in young cells to a unimodal distribution in old cells. The distribution of motility metrics in immortalized cells did not change throughout long-term cultivation. <b>Conclusions:</b> Subpopulation heterogeneity decreases as MSCs undergo replicative senescence.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2509 - 2518"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. V. Alekseenko, L. G. Kondratyeva, I. P. Chernov, E. D. Sverdlov
{"title":"Universal Immune Learning Ability in Immune and Non-Immune Cells (A Review)","authors":"I. V. Alekseenko, L. G. Kondratyeva, I. P. Chernov, E. D. Sverdlov","doi":"10.1134/S1068162024060359","DOIUrl":"10.1134/S1068162024060359","url":null,"abstract":"<p>In response to infections, all jawed vertebrate organisms have evolved complex defense systems in which long-term immune memory of previous infections plays a central role. This memory allows the cells of the immune system to recognize pathogens and protect the organism by developing a stronger immune response in case of repeated infections with the same pathogen. Until recently, the long-term immune memory was attributed solely to the adaptive immune system. However, in the last decade, the protective role of innate immune cells has become increasingly apparent. It has been discovered that, in addition to their well-known role in short-term and nonspecific defense, these cells can also acquire a form of long-term memory, enabling them to mount an immune response to unrelated pathogens (heterologous protection), which is enhanced by repeated stimulation. This long-term nonspecific innate immune memory has been termed “trained immunity.” Its occurrence is associated with intensive metabolic rearrangements and epigenetic modifications of innate immune cells. In light of the growing threat of unforeseen epidemics, there is increasing hope that the possibility of creating nonspecific universal vaccines may be linked to the innate immune system. Recently, the capacity for trained immunity has been identified in tissue-resident immune cells. Moreover, the immune memory in non-immune cells, such as fibroblasts, stromal cells, and epithelial stem cells, has also been revealed. This ability has been termed “enhanced trained immunity” or “inflammatory memory.” The significance of tissue-specific induction of trained innate immunity is not yet fully understood, but it may play an important role in local defense against infections, as well as in inflammatory diseases and cancer.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2209 - 2218"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Update on Chemistry and Biological Activities of Naturally Occuring Isocoumarins and 3,4-Dihydroisocoumarins (A Review)","authors":"Ghulam Shabir, Aamer Saeed, Moonsa Haq, Fatima Choudry, Rimsha Kiran, Madiha Irfan, Shaneeza Tariq, Hesham R. El-Seedi","doi":"10.1134/S1068162024060153","DOIUrl":"10.1134/S1068162024060153","url":null,"abstract":"<p>Naturally occurring isocoumarins and dihydroisocoumarins emerged as a captivating class of compounds due to their structural diversity and multifaceted biological activities. It stands out as a group of metabolites, which are coumarin isomers with a reversed lactone moiety. They are synthesized by various organisms including plants, marine life, microbes, bacteria, and fungi. Our previous review covered the period 2016–2019, documenting nearly all natural products of this class. This updated review unravels the naturally occurring isocoumarins and dihydroisocoumarins by comprehensively exploring their structural elucidation and the broad spectrum of biological activities ranging from antimicrobial and anticancer properties to antitumour and enzyme inhibition. The classification and biological activities with structural elucidation revealed in our previous review are updated by the discovery of new members of this class. This review includes the most recent research on the structural variety and biological activity of these natural compounds.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2426 - 2444"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. V. Ivanskaya, M. I. Meschaninova, M. A. Vorobyeva, D. O. Zharkov, D. S. Novopashina
{"title":"An Approach to the Synthesis of Cyclic Photocleavable RNA for Photoactivatable CRISPR/Cas9 System","authors":"E. V. Ivanskaya, M. I. Meschaninova, M. A. Vorobyeva, D. O. Zharkov, D. S. Novopashina","doi":"10.1134/S1068162024050327","DOIUrl":"10.1134/S1068162024050327","url":null,"abstract":"<p><b>Objective:</b> The development of controllable gene editing systems based on the CRISPR/Cas technology is a problem of immediate interest in modern molecular biology and genetic engineering. An interesting solution of this problem is modification of guide RNA by introduction of photocleavable linkers. <b>Methods:</b> We developed an approach to the synthesis of cyclic photocleavable guide crRNA for the CRISPR/Cas9 system with a photolinker based on 1-(2-nitrophenyl)-1,2-ethanediol (PL). In cyclic form, such guide RNA is not functional. Upon irradiation by UV-light, such guide RNA is linearized and CRISPR/Cas9 system is activated. Two chemical methods for the cyclization of RNA were tested: Michael reaction (thiol-maleimide condensation) and Cu-catalyzed azide-alkyne cycloaddition (CuAAC, click-chemistry reaction). For this purpose, 5′,3′-modified RNA containing reactive groups were prepared. <b>Results and Discussion:</b> The advantages of the CuAAC reaction for cyclic RNA preparation was demonstrated. Efficiency of cyclic RNA depends on their secondary structure and on the ability of reactive groups to move closer. A series of photocleavable and control non-cleavable cyclic crRNA was obtained. It was shown that cyclic crRNAs guide Cas9 nuclease for plasmid cleavage less efficiently, but linearization of photocleavable cyclic crRNA increases the extent of plasmid cleavage. <b>Conclusions:</b> The developed approach allows to synthesize cyclic photocleavable RNA that can be used for spatiotemporal activation of guide RNA for gene editing. Photoregulation of gene editing will allow minimizing the off-target effects.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"1807 - 1821"},"PeriodicalIF":1.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. F. Shtylev, I. Yu. Shishkin, V. E. Shershov, V. E. Kuznetsova, D. A. Kachulyak, V. I. Butvilovskaya, A. I. Levashova, V. A. Vasiliskov, O. A. Zasedateleva, A. V. Chudinov
{"title":"Immobilization of Protein Probes on Biochips with Brush Polymer Cells","authors":"G. F. Shtylev, I. Yu. Shishkin, V. E. Shershov, V. E. Kuznetsova, D. A. Kachulyak, V. I. Butvilovskaya, A. I. Levashova, V. A. Vasiliskov, O. A. Zasedateleva, A. V. Chudinov","doi":"10.1134/S1068162024050339","DOIUrl":"10.1134/S1068162024050339","url":null,"abstract":"<p><b>Objective:</b> The biochip method allows microscale multiparametric analysis of macromolecular samples using a matrix of immobilized molecular probes. Selection of materials for biochip fabrication, functionalization of the carrier surface, and the method of immobilization of molecular probes are the key tasks of biochip technology. <b>Methods:</b> Methods of obtaining polymer coating from polyvinyl acetate on the surface of polyethylene terephthalate polymer substrates and subsequent production of brush polymers by photoinduced radical copolymerization of acrylate monomers have been studied. Cell matrices with numerous reactive chemical groups for subsequent immobilization of proteins were formed by photolithography method. Methods of activation of carboxyl groups on brush polymers attached to the surface of polyethylene terephthalate were tested. Immobilization of model protein streptavidin labeled with fluorescent dye Su3 was performed to test the method of activation of carboxyl groups. <b>Results and Discussion:</b> A variant of the immunofluorescence assay in a biological microarray format was tested on the model “streptavidin–biotinylated immunoglobulin.” <b>Conclusions:</b> Streptavidin immobilized in brush polymer cells retains functionality and spatial accessibility for binding to biotinylated immunoglobulin and subsequent manifestation by antibodies fluorescently labeled with Cy5 dye, which opens prospects for the use of biological microarrays with brush polymer cells on polyethylene terephthalate substrates for immunofluorescence analysis of various protein targets.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"2036 - 2049"},"PeriodicalIF":1.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Importance of Coumarin Derivatives in Medicinal Chemistry: A Comprehensive Review","authors":"Mahima Samanth, Mahesh Bhat","doi":"10.1134/S1068162024050108","DOIUrl":"10.1134/S1068162024050108","url":null,"abstract":"<p>Coumarins are the natural products which are characterized as 1,2-benzopyrones. The discovery of coumarins is done with enlarged chemical space through many synthetic course of action. They are found in many plants such as cinnamon, tonka beans, and sweet clover. Cassia cinnamon has the highest amount of coumarin whereas Ceylon cinnamon has the lowest. Many biological activities and applications of coumarins are attributed to their capacity to engage in non-covalent interactions with numerous enzymes and receptors found in living organisms. Some of the pharmacological properties are anticancer, anticoagulant, antifungal, antiviral, antitubercular, antioxidant, anti-inflammatory, antidiabetic, antibacteria, antihypertensive, antihyperglycemic, anticonvulsant, antiparasitic, antineurodegenerative, etc. A review has been carried out based on various pharmacological activities containing Coumarin derivatives to rationalize the activities based on the structural variations. Coumarin derivatives have been attracting increasing interest for their usefulness and excellent contribution in the prevention, curing, and treatment of the diseases, growth modulation, cell growth and regulation of immune response.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"1672 - 1691"},"PeriodicalIF":1.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}