{"title":"Exploring the use of situation awareness in behaviors and practices of health and safety leaders.","authors":"D R Willmer","doi":"10.19150/trans.8106","DOIUrl":"https://doi.org/10.19150/trans.8106","url":null,"abstract":"<p><p>An understanding of how health and safety management systems (HSMS) reduce worksite injuries, illnesses and fatalities may be gained in studying the behaviors of health and safety leaders. These leaders bear the accountability for identifying, understanding and managing the risks of a mining operation. More importantly, they have to transfer this knowledge of perception, recognition and response to risks in the mining environment to their workers. The leaders' efforts to build and maintain a mining operation's workforce that consistently executes safe work practices may be captured through more than just lagging indicators of health and safety performance. This exploratory study interviewed six leaders in occupations such as site-level safety supervisors, mine superintendents and/or general managers at surface and underground stone, sand and gravel and metal/nonmetal mine sites throughout the United States, with employee populations ranging from 40 to 175. In exploring leaders' perspectives on how they systematically manage health and safety, examples such as approaches to task training, handling near-miss incidents, identifying future leaders and providing workers with feedback offer insights into how leaders translate their knowledge and management of site-level risks to others.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"342 1","pages":"36-42"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868480/pdf/nihms948451.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35956346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examination of a newly developed mobile dry scrubber (DS) for coal mine dust control applications.","authors":"J Organiscak, J Noll, D Yantek, B Kendall","doi":"10.19150/trans.7325","DOIUrl":"https://doi.org/10.19150/trans.7325","url":null,"abstract":"<p><p>The Office of Mine Safety and Health Research of the U.S. National Institute for Occupational Safety and Health (NIOSH OMSHR) conducted laboratory testing of a self-tramming, remotely controlled mobile Dry Scrubber (DS) that J.H. Fletcher and Co. developed under a contract with NIOSH OMSHR to reduce the exposure of miners to airborne dust. The scrubber was found to average greater than 95 percent dust removal efficiency with disposable filters, and 88 and 90 percent, respectively, with optional washable filters in their prewash and post-wash test conditions. Although the washable filters can be reused, washing them generated personal and downstream respirable dust concentrations of 1.2 and 8.3 mg/m<sup>3</sup>, respectively, for a 10-min washing period. The scrubber's velocity-pressure-regulated variable-frequency-drive fan maintained relatively consistent airflow near the targeted 1.42 and 4.25 m<sup>3</sup>/s (3,000 and 9,000 ft<sup>3</sup>/min) airflow rates during most of the laboratory dust testing until reaching its maximum 60-Hz fan motor frequency or horsepower rating at 2,610 Pa (10.5 in. w.g.) of filter differential pressure and 3.97 m<sup>3</sup>/s (8,420 ft<sup>3</sup>/min) of scrubber airflow quantity. Laboratory sound level measurements of the scrubber showed that the outlet side of the scrubber was noisier, and the loaded filters increased sound levels compared with clean filters at the same airflow quantities. With loaded filters, the scrubber reached a 90 dB(A) sound level at 2.83 m<sup>3</sup>/s (6,000 ft<sup>3</sup>/min) of scrubber airflow, indicating that miners should not be overexposed in relation to MSHA's permissible exposure level - under Title 30 Code of Federal Regulations Part 62.101- of 90 dB(A) at or below this airflow quantity. The scrubber's washable filters were not used during field-testing because of their lower respirable dust removal efficiency and the airborne dust generated by filter washing. Field-testing the scrubber with disposable filters at two underground coal mine sections showed that it could clean a portion of the section return air and provide dust reduction of about 50 percent at the face area downstream of the continuous-miner operation.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 ","pages":"38-47"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460773/pdf/nihms856646.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35073374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of detection and response times of fire sensors using an atmospheric monitoring system.","authors":"J H Rowland, C D Litton, R A Thomas","doi":"10.19150/trans.7334","DOIUrl":"https://doi.org/10.19150/trans.7334","url":null,"abstract":"<p><p>Atmospheric monitoring systems (AMS) are required when using air from conveyor belt entries to ventilate working sections in U.S. underground coal mines. AMS technology has the potential to increase fire safety mine-wide, but research is needed to determine the detection and response times for fires of a variety of combustible materials. To evaluate the potential of an AMS for fire detection in other areas of a coal mine, a series of full-scale fire experiments were conducted to determine detection and response times from fires of different combustible materials that are found in U.S. underground coal mines, including high- and low-volatility coals, conveyor belts, brattice materials, different types of wood, diesel fuel, and a foam sealant. These experiments were conducted in the Safety Research Coal Mine (SRCM) of the U.S. National Institute for Occupational Safety and Health (NIOSH) located in Pittsburgh, PA, using a commercially available AMS that is typical of current technology. The results showed that through proper selection of sensors and their locations, a mine-wide AMS can provide sufficient early fire warning times and improve the health and safety of miners.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"104-112"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438158/pdf/nihms854278.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35014910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurement of RF propagation around corners in underground mines and tunnels.","authors":"R Jacksha, C Zhou","doi":"10.19150/trans.7324","DOIUrl":"https://doi.org/10.19150/trans.7324","url":null,"abstract":"<p><p>This paper reports measurement results for radio frequency (RF) propagation around 90° corners in tunnels and underground mines, for vertically, horizontally and longitudinally polarized signals. Measurements of signal power attenuation from a main entry into a crosscut were performed at four frequencies - 455, 915, 2450 and 5800 MHz - that are common to underground radio communication systems. From the measurement data, signal power loss was determined as a function of signal coupling from the main entry into the crosscut. The resultant power loss data show there are many factors that contribute to power attenuation from a main entry into a crosscut, including frequency, antenna polarization and cross-sectional entry dimensions.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"30-37"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472338/pdf/nihms861031.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35097918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J J Sammarco, A Podlesny, E N Rubinstein, B Demich
{"title":"An analysis of roof bolter fatalities and injuries in U.S. mining.","authors":"J J Sammarco, A Podlesny, E N Rubinstein, B Demich","doi":"10.19150/trans.7322","DOIUrl":"https://doi.org/10.19150/trans.7322","url":null,"abstract":"<p><p>Roof bolting typically follows the extraction of a commodity to help keep the roof from collapsing. During 2004 to 2013, roof bolter operators had the highest number of machinery-related injuries, accounting for 64.7 percent, at underground coal mines. This paper analyzes U.S. roof bolter fatal and nonfatal lost-time injury data at underground work locations for all commodities from 2004 through 2013 and determines risk indices for six roof bolting tasks. For fatal and nonfatal incidences combined, the roof bolting tasks in order of the highest to lowest risk index were bolting, handling of materials, setting the temporary roof support (TRS), drilling, tramming, and traversing. For fatalities, the roof bolting tasks in order of the highest to lowest risk index were handling of materials, setting the TRS, bolting, drilling, traversing, and tramming. Age was found to be a significant factor. Severity of injury, indicated by days lost, was found to increase with increasing age as well as with increasing experience, largely due to the confounding of age and experience. The operation of the roof bolting machine used in underground mining should be a research priority given the high frequency and severity of incidents. The results also suggest that temporal factors may exist, so additional research is warranted to better understand these factors and potentially develop interventions. This research provides a data-driven foundation from which future research can be conducted for safety interventions to reduce the frequency and severity of incidences involving the roof bolter activities of bolting, handling of materials, and setting the TRS.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"11-20"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568560/pdf/nihms876715.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35348922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T W Beck, J A Organiscak, D E Pollock, J D Potts, W R Reed
{"title":"Influence of continuous mining arrangements on respirable dust exposures.","authors":"T W Beck, J A Organiscak, D E Pollock, J D Potts, W R Reed","doi":"10.19150/trans.7321","DOIUrl":"https://doi.org/10.19150/trans.7321","url":null,"abstract":"<p><p>In underground continuous mining operations, ventilation, water sprays and machine-mounted flooded-bed scrubbers are the primary means of controlling respirable dust exposures at the working face. Changes in mining arrangements - such as face ventilation configuration, orientation of crosscuts mined in relation to the section ventilation and equipment operator positioning - can have impacts on the ability of dust controls to reduce occupational respirable dust exposures. This study reports and analyzes dust concentrations measured by the Pittsburgh Mining Research Division for remote-controlled continuous mining machine operators as well as haulage operators at 10 U.S. underground mines. The results of these respirable dust surveys show that continuous miner exposures varied little with depth of cut but are significantly higher with exhaust ventilation. Haulage operators experienced elevated concentrations with blowing face ventilation. Elevated dust concentrations were observed for both continuous miner operators and haulage operators when working in crosscuts driven into or counter to the section airflow. Individual cuts are highlighted to demonstrate instances of minimal and excessive dust exposures attributable to particular mining configurations. These findings form the basis for recommendations for lowering face worker respirable dust exposures.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438179/pdf/nihms855345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35014909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of intelligent proximity detection zones to prevent striking and pinning fatalities around continuous mining machines.","authors":"P T Bissert, J L Carr, J P DuCarme, A K Smith","doi":"10.19150/trans.7330","DOIUrl":"https://doi.org/10.19150/trans.7330","url":null,"abstract":"<p><p>The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"75-81"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472358/pdf/nihms857200.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35097919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Managing health and safety risks: Implications for tailoring health and safety management system practices.","authors":"D R Willmer, E J Haas","doi":"10.19150/trans.7333","DOIUrl":"https://doi.org/10.19150/trans.7333","url":null,"abstract":"<p><p>As national and international health and safety management system (HSMS) standards are voluntarily accepted or regulated into practice, organizations are making an effort to modify and integrate strategic elements of a connected management system into their daily risk management practices. In high-risk industries such as mining, that effort takes on added importance. The mining industry has long recognized the importance of a more integrated approach to recognizing and responding to site-specific risks, encouraging the adoption of a risk-based management framework. Recently, the U.S. National Mining Association led the development of an industry-specific HSMS built on the strategic frameworks of ANSI: Z10, OHSAS 18001, The American Chemistry Council's Responsible Care, and ILO-OSH 2001. All of these standards provide strategic guidance and focus on how to incorporate a plan-do-check-act cycle into the identification, management and evaluation of worksite risks. This paper details an exploratory study into whether practices associated with executing a risk-based management framework are visible through the actions of an organization's site-level management of health and safety risks. The results of this study show ways that site-level leaders manage day-to-day risk at their operations that can be characterized according to practices associated with a risk-based management framework. Having tangible operational examples of day-to-day risk management can serve as a starting point for evaluating field-level risk assessment efforts and their alignment to overall company efforts at effective risk mitigation through a HSMS or other processes.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"100-103"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/trans.7333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35108350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of heat loss mechanisms for mobile tent-type refuge alternatives.","authors":"P T Bissert, D S Yantek, M D Klein, L Yan","doi":"10.19150/trans.7329","DOIUrl":"https://doi.org/10.19150/trans.7329","url":null,"abstract":"<p><p>Federal regulations require that refuge alternatives (RAs) be located within 305 m (1,000 ft) of the working face and spaced at one-hour travel distances in the outby area in underground coal mines, in the event that miners cannot escape during a disaster. The Mine Safety and Health Administration mandates that RAs provide safe shelter and livable conditions for a minimum of 96 hours while maintaining the apparent temperature below 35 °C (95 °F). The U.S. National Institute for Occupational Safety and Health used a validated thermal simulation model to examine the mechanisms of heat loss from an RA to the ambient mine and the effect of mine strata composition on the final internal dry bulb temperature (DBT) for a mobile tent-type RA. The results of these studies show that 51 percent of the heat loss from the RA to the ambient mine is due to radiation and 31 percent to conduction. Three mine width and height configurations and four mine strata compositions were examined. The final DBT inside the RA after 96 hours varied by less than 1 °C (1.8 °F) for the three mine width/height configurations and by less than 2 °C (3.6 °F) for the four mine strata compositions.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"70-74"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516479/pdf/nihms856581.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35193006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using software to predict occupational hearing loss in the mining industry.","authors":"A S Azman, M Li, J K Thompson","doi":"10.19150/trans.7332","DOIUrl":"https://doi.org/10.19150/trans.7332","url":null,"abstract":"<p><p>Powerful mining systems typically generate high-level noise that can damage the hearing ability of miners. Engineering noise controls are the most desirable and effective control for overexposure to noise. However, the effects of these noise controls on the actual hearing status of workers are not easily measured. A tool that can provide guidance in assigning workers to jobs based on the noise levels to which they will be exposed is highly desirable. Therefore, the Pittsburgh Mining Research Division (PMRD) of the U.S. National Institute for Occupational Safety and Health (NIOSH) developed a tool to estimate in a systematic way the hearing loss due to occupational noise exposure and to evaluate the effectiveness of developed engineering controls. This computer program is based on the ISO 1999 standard and can be used to estimate the loss of hearing ability caused by occupational noise exposures. In this paper, the functionalities of this software are discussed and several case studies related to mining machinery are presented to demonstrate the functionalities of this software.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 ","pages":"92-99"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460774/pdf/nihms860133.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35073375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}