The journal of machine learning for biomedical imaging最新文献

筛选
英文 中文
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up 纵向进化(蝌蚪)挑战的阿尔茨海默病预测:1年后的随访结果
The journal of machine learning for biomedical imaging Pub Date : 2020-02-09 DOI: 10.59275/j.melba.2021-2dcc
Razvan V. Marinescu, N. Oxtoby, A. Young, E. Bron, A. Toga, M. Weiner, F. Barkhof, Nick C Fox, A. Eshaghi, Tina Toni, Marcin Salaterski, V. Lunina, M. Ansart, S. Durrleman, Pascal Lu, S. Iddi, Dan Li, W. Thompson, M. Donohue, A. Nahon, Yarden Levy, Dan Halbersberg, M. Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose Gerardo Tamez-Peña, A. Ismail, Timothy Wood, H. C. Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. Yeo, Gan Chen, Kexin Qi, Shi-Yu Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, Denisa Rimocea, M. Ghazi, M. Nielsen, S. Ourselin, Lauge Sørensen, Vikram Venkatraghavan, Keli Liu, C. Rabe, P. Manser, S. Hill, J. Howlett, Zhiyue Huang, S. Kiddle, S. Mukherjee, Anaïs Rouanet, B. Taschler, B. Tom, S. White, N. Faux, S. Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, K. Estrada, Leon M. Aksman, A. Altmann, C. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clémentine Fourrier, L. L. Rakêt, Aristeidis Sotiras, G. Erus, J. Doshi, C. Davatzikos, J. Vogel, Andrew Doyle, Angela Tam, A
{"title":"The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up","authors":"Razvan V. Marinescu, N. Oxtoby, A. Young, E. Bron, A. Toga, M. Weiner, F. Barkhof, Nick C Fox, A. Eshaghi, Tina Toni, Marcin Salaterski, V. Lunina, M. Ansart, S. Durrleman, Pascal Lu, S. Iddi, Dan Li, W. Thompson, M. Donohue, A. Nahon, Yarden Levy, Dan Halbersberg, M. Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose Gerardo Tamez-Peña, A. Ismail, Timothy Wood, H. C. Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. Yeo, Gan Chen, Kexin Qi, Shi-Yu Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, Denisa Rimocea, M. Ghazi, M. Nielsen, S. Ourselin, Lauge Sørensen, Vikram Venkatraghavan, Keli Liu, C. Rabe, P. Manser, S. Hill, J. Howlett, Zhiyue Huang, S. Kiddle, S. Mukherjee, Anaïs Rouanet, B. Taschler, B. Tom, S. White, N. Faux, S. Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, K. Estrada, Leon M. Aksman, A. Altmann, C. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clémentine Fourrier, L. L. Rakêt, Aristeidis Sotiras, G. Erus, J. Doshi, C. Davatzikos, J. Vogel, Andrew Doyle, Angela Tam, A","doi":"10.59275/j.melba.2021-2dcc","DOIUrl":"https://doi.org/10.59275/j.melba.2021-2dcc","url":null,"abstract":"Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of \"The Alzheimer's Disease Prediction Of Longitudinal Evolution\" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 percentage points) compared to the full longitudinal dataset. The submission system remains open via the website https://tadpole.grand-challenge.org, while TADPOLE SHARE (https://tadpole-share.github.io/) collates code for submissions. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89767080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Distributionally Robust Deep Learning using Hardness Weighted Sampling 基于硬度加权抽样的分布鲁棒深度学习
The journal of machine learning for biomedical imaging Pub Date : 2020-01-08 DOI: 10.59275/j.melba.2022-8b6a
Lucas Fidon, S. Ourselin, T. Vercauteren
{"title":"Distributionally Robust Deep Learning using Hardness Weighted Sampling","authors":"Lucas Fidon, S. Ourselin, T. Vercauteren","doi":"10.59275/j.melba.2022-8b6a","DOIUrl":"https://doi.org/10.59275/j.melba.2022-8b6a","url":null,"abstract":"Limiting failures of machine learning systems is of paramount importance for safety-critical applications. In order to improve the robustness of machine learning systems, Distributionally Robust Optimization (DRO) has been proposed as a generalization of Empirical Risk Minimization (ERM). However, its use in deep learning has been severely restricted due to the relative inefficiency of the optimizers available for DRO in comparison to the wide-spread variants of Stochastic Gradient Descent (SGD) optimizers for ERM.We propose SGD with hardness weighted sampling, a principled and efficient optimization method for DRO in machine learning that is particularly suited in the context of deep learning. Similar to a hard example mining strategy in practice, the proposed algorithm is straightforward to implement and computationally as efficient as SGD-based optimizers used for deep learning, requiring minimal overhead computation. In contrast to typical ad hoc hard mining approaches, we prove the convergence of our DRO algorithm for over-parameterized deep learning networks with ReLU activation and finite number of layers and parameters.Our experiments on fetal brain 3D MRI segmentation and brain tumor segmentation in MRI demonstrate the feasibility and the usefulness of our approach. Using our hardness weighted sampling for training a state-of-the-art deep learning pipeline leads to improved robustness to anatomical variabilities in automatic fetal brain 3D MRI segmentation using deep learning and to improved robustness to the image protocol variations in brain tumor segmentation.a decrease of 2% of the interquartile range of the Dice scores for the enhanced tumor and the tumor core regions.Our code is available at https://github.com/LucasFidon/HardnessWeightedSampler","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"148 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77869875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信