纵向进化(蝌蚪)挑战的阿尔茨海默病预测:1年后的随访结果

Razvan V. Marinescu, N. Oxtoby, A. Young, E. Bron, A. Toga, M. Weiner, F. Barkhof, Nick C Fox, A. Eshaghi, Tina Toni, Marcin Salaterski, V. Lunina, M. Ansart, S. Durrleman, Pascal Lu, S. Iddi, Dan Li, W. Thompson, M. Donohue, A. Nahon, Yarden Levy, Dan Halbersberg, M. Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose Gerardo Tamez-Peña, A. Ismail, Timothy Wood, H. C. Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. Yeo, Gan Chen, Kexin Qi, Shi-Yu Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, Denisa Rimocea, M. Ghazi, M. Nielsen, S. Ourselin, Lauge Sørensen, Vikram Venkatraghavan, Keli Liu, C. Rabe, P. Manser, S. Hill, J. Howlett, Zhiyue Huang, S. Kiddle, S. Mukherjee, Anaïs Rouanet, B. Taschler, B. Tom, S. White, N. Faux, S. Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, K. Estrada, Leon M. Aksman, A. Altmann, C. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clémentine Fourrier, L. L. Rakêt, Aristeidis Sotiras, G. Erus, J. Doshi, C. Davatzikos, J. Vogel, Andrew Doyle, Angela Tam, A
{"title":"纵向进化(蝌蚪)挑战的阿尔茨海默病预测:1年后的随访结果","authors":"Razvan V. Marinescu, N. Oxtoby, A. Young, E. Bron, A. Toga, M. Weiner, F. Barkhof, Nick C Fox, A. Eshaghi, Tina Toni, Marcin Salaterski, V. Lunina, M. Ansart, S. Durrleman, Pascal Lu, S. Iddi, Dan Li, W. Thompson, M. Donohue, A. Nahon, Yarden Levy, Dan Halbersberg, M. Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose Gerardo Tamez-Peña, A. Ismail, Timothy Wood, H. C. Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. Yeo, Gan Chen, Kexin Qi, Shi-Yu Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, Denisa Rimocea, M. Ghazi, M. Nielsen, S. Ourselin, Lauge Sørensen, Vikram Venkatraghavan, Keli Liu, C. Rabe, P. Manser, S. Hill, J. Howlett, Zhiyue Huang, S. Kiddle, S. Mukherjee, Anaïs Rouanet, B. Taschler, B. Tom, S. White, N. Faux, S. Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, K. Estrada, Leon M. Aksman, A. Altmann, C. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clémentine Fourrier, L. L. Rakêt, Aristeidis Sotiras, G. Erus, J. Doshi, C. Davatzikos, J. Vogel, Andrew Doyle, Angela Tam, A","doi":"10.59275/j.melba.2021-2dcc","DOIUrl":null,"url":null,"abstract":"Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of \"The Alzheimer's Disease Prediction Of Longitudinal Evolution\" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 percentage points) compared to the full longitudinal dataset. The submission system remains open via the website https://tadpole.grand-challenge.org, while TADPOLE SHARE (https://tadpole-share.github.io/) collates code for submissions. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up\",\"authors\":\"Razvan V. Marinescu, N. Oxtoby, A. Young, E. Bron, A. Toga, M. Weiner, F. Barkhof, Nick C Fox, A. Eshaghi, Tina Toni, Marcin Salaterski, V. Lunina, M. Ansart, S. Durrleman, Pascal Lu, S. Iddi, Dan Li, W. Thompson, M. Donohue, A. Nahon, Yarden Levy, Dan Halbersberg, M. Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose Gerardo Tamez-Peña, A. Ismail, Timothy Wood, H. C. Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. Yeo, Gan Chen, Kexin Qi, Shi-Yu Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, Denisa Rimocea, M. Ghazi, M. Nielsen, S. Ourselin, Lauge Sørensen, Vikram Venkatraghavan, Keli Liu, C. Rabe, P. Manser, S. Hill, J. Howlett, Zhiyue Huang, S. Kiddle, S. Mukherjee, Anaïs Rouanet, B. Taschler, B. Tom, S. White, N. Faux, S. Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, K. Estrada, Leon M. Aksman, A. Altmann, C. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clémentine Fourrier, L. L. Rakêt, Aristeidis Sotiras, G. Erus, J. Doshi, C. Davatzikos, J. Vogel, Andrew Doyle, Angela Tam, A\",\"doi\":\"10.59275/j.melba.2021-2dcc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of \\\"The Alzheimer's Disease Prediction Of Longitudinal Evolution\\\" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 percentage points) compared to the full longitudinal dataset. The submission system remains open via the website https://tadpole.grand-challenge.org, while TADPOLE SHARE (https://tadpole-share.github.io/) collates code for submissions. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.\",\"PeriodicalId\":75083,\"journal\":{\"name\":\"The journal of machine learning for biomedical imaging\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of machine learning for biomedical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59275/j.melba.2021-2dcc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of machine learning for biomedical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59275/j.melba.2021-2dcc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

准确预测阿尔茨海默病风险受试者的进展对于招募合适的受试者进行临床试验至关重要。然而,目前缺乏预测疾病发生和进展的最先进算法的前瞻性比较。我们展示了“阿尔茨海默病纵向进化预测”(TADPOLE)挑战的研究结果,该挑战比较了来自33个国际团队的92种算法在预测219名阿尔茨海默病风险个体的未来轨迹方面的表现。挑战参与者被要求在未来5年的每个月预测三个关键结果:临床诊断、阿尔茨海默病评估量表认知子域(ADAS-Cog13)和心室的总容积。挑战参与者使用的方法包括多元线性回归、机器学习方法,如支持向量机和深度神经网络,以及疾病进展模型。没有哪一份报告能最好地预测所有三种结果。对于临床诊断和心室容量预测,最佳算法在预测能力上明显优于简单基线。然而,对于ADAS-Cog13,没有一种提交的预测方法明显优于随机猜测。两种基于对所有预测取平均值和中位数的集成方法在几乎所有任务中都获得了最高分。优于平均水平的诊断预测通常与脑脊液(CSF)样本和弥散张量成像(DTI)的附加特征相关。另一方面,心室容量预测的更好表现与汇总统计相关,例如患者特异性生物标志物的斜率或最大值/最小值。在有限的模拟临床试验数据的横截面子集上,与完整的纵向数据集相比,最佳算法在预测临床诊断方面的性能仅略有下降(2个百分点)。提交系统通过网站https://tadpole.grand-challenge.org保持开放,而蝌蚪共享(https://tadpole-share.github.io/)整理提交代码。TADPOLE的独特结果表明,目前的预测算法提供了足够的准确性,可以利用与临床诊断和心室体积相关的生物标志物,在阿尔茨海默病的临床试验中进行队列优化。然而,研究结果对使用认知测试分数作为患者选择和临床试验的主要终点提出了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up
Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clinical trials, performance of the best algorithms at predicting clinical diagnosis decreased only slightly (2 percentage points) compared to the full longitudinal dataset. The submission system remains open via the website https://tadpole.grand-challenge.org, while TADPOLE SHARE (https://tadpole-share.github.io/) collates code for submissions. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信