{"title":"Fighting fire with fire: engineering a microbe into a therapeutic defense against drug-resistant biofilms.","authors":"Charlotte Ayn Cialek","doi":"10.1093/synbio/ysad008","DOIUrl":"https://doi.org/10.1093/synbio/ysad008","url":null,"abstract":"","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"8 1","pages":"ysad008"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editing <i>Aspergillus terreus</i> using the CRISPR-Cas9 system.","authors":"Sra-Yh Shih, Uffe Hasbro Mortensen, Fang-Rong Chang, HsinYuan Tsai","doi":"10.1093/synbio/ysac031","DOIUrl":"https://doi.org/10.1093/synbio/ysac031","url":null,"abstract":"<p><p>CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in <i>Aspergillus terreus</i>. In this study, we present CRISPR/Cas9 genome editing in <i>A. terreus</i>. To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the <i>lovB</i> and <i>lovR</i> genes, respectively, and created targeted gene insertion (<i>lovF</i> gene) and iterative gene editing in <i>A. terreus</i> (<i>lovF</i> and <i>lovR</i> genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the <i>ku70</i> and <i>pyrG</i> genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the <i>pyrG</i> gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in <i>A. terreus</i>, and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of <i>A. terreus</i>.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"7 1","pages":"ysac031"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/24/ysac031.PMC9795164.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10454941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an expression-tunable multiple protein synthesis system in cell-free reactions using T7-promoter-variant series.","authors":"Naoko Senda, Toshihiko Enomoto, Kenta Kihara, Naoki Yamashiro, Naosato Takagi, Daisuke Kiga, Hirokazu Nishida","doi":"10.1093/synbio/ysac029","DOIUrl":"https://doi.org/10.1093/synbio/ysac029","url":null,"abstract":"<p><p>New materials with a low environmental load are expected to be generated through synthetic biology. To widely utilize this technology, it is important to create cells with designed biological functions and to control the expression of multiple enzymes. In this study, we constructed a cell-free evaluation system for multiple protein expression, in which synthesis is controlled by T7 promoter variants. The expression of a single protein using the T7 promoter variants showed the expected variety in expression levels, as previously reported. We then examined the expression levels of multiple proteins that are simultaneously produced in a single well to determine whether they can be predicted from the promoter activity values, which were defined from the isolated protein expression levels. When the sum of messenger ribonucleic acid (mRNA) species is small, the experimental protein expression levels can be predicted from the promoter activities (graphical abstract (a)) due to low competition for ribosomes. In other words, by using combinations of T7 promoter variants, we successfully developed a cell-free multiple protein synthesis system with tunable expression. In the presence of large amounts of mRNA, competition for ribosomes becomes an issue (graphical abstract (b)). Accordingly, the translation level of each protein cannot be directly predicted from the promoter activities and is biased by the strength of the ribosome binding site (RBS); a weaker RBS is more affected by competition. Our study provides information regarding the regulated expression of multiple enzymes in synthetic biology.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"7 1","pages":"ysac029"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/14/ysac029.PMC9791696.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10459894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-growing environmentally responsive houses made from agricultural waste and fungal mycelia.","authors":"Sonja Billerbeck","doi":"10.1093/synbio/ysac003","DOIUrl":"https://doi.org/10.1093/synbio/ysac003","url":null,"abstract":"Mix the ingredients, pour them into a tin, and ‘bake’ at ambient temperature for 5days. What sounds like instructions for a ready-made baking mix could soon become a way to grow your own home—or emergency shelter needed after a natural disaster (1). While synthetic biology often focuses on using cells as factories to make molecules and nano-structures of interest, Rodrigo–Navarro et al focused on the cells themselves as the building blocks of macro-structure materials suitable for houses and shelters. This “engineered living material” (ELM) could be grown on demand, they are self-healing, responsive to environmental cues, and recyclable into new structures (2). This macro-scale ELM was developed in a collaboration between the New York-based biomaterial company Ecovative Design and the laboratories of Prof. Harris Wang (Columbia) and Prof. Chris Voigt. The ‘recipe’ for the team’s ELM requires a mix of agricultural byproducts, water, flour and calcium sulfate, and the tree fungus Ganoderma spec. The fungus uses the agricultural waste for nutrition and structural support. Once mixed and cast into brick-shaped foldable paper moulds, the fungal mycelia glue the agricultural waste together into a dense material. In contrast to Ecovative’s standard process of ‘baking’ the ingredients at high temperature, which kills the fungus, McBee et al were able to desiccate the material at ambient temperature. In this state, the fungus rests but can be revived by moisturization. This allows casting of modular bricks that can later be grown together into larger 3D structures—like walls or shelters—without additional mortar. It also allows the material to self-heal if broken. The authors show that a broken brick could be regrown by placing the broken halves close to each other with the healed material retaining most of its original mechanical properties. Further, the material could be fully recycled by grinding it down and using it as inoculum to grow new bricks. After developing this core living material, the team went one step further and equipped it with additional functions by adding an engineered bacterium that carries user-defined synthetic circuitry to the material mix. Instead of using an established, laboratory-tamed synthetic biology chassis such as Escherichia coli, which might have been outcompeted by the fungus, the authors performed a detailed microbiome analysis of the material, identifying and isolating a prevalent member, Pantoea agglomerans. They turned P. agglomerans into an engineerable chassis that could be reintroduced and maintained within the material. The authors then implemented a toy circuit distributed over two engineered strains of P. agglomerans. The first strain generated a volatile quorum sensing molecule (sender strain) that could be sensed and propagated through the material by a second strain (responderpropagator strain) that also created a fluorescent output that could be visualized under the microscope. As such, individual bricks ","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"7 1","pages":"ysac003"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Zieliński, Johnny Hay, Andrew Romanowski, Anja Nenninger, Alistair McCormick, Andrew J Millar
{"title":"SynBio2Easy-a biologist-friendly tool for batch operations on SBOL designs with Excel inputs.","authors":"Tomasz Zieliński, Johnny Hay, Andrew Romanowski, Anja Nenninger, Alistair McCormick, Andrew J Millar","doi":"10.1093/synbio/ysac002","DOIUrl":"https://doi.org/10.1093/synbio/ysac002","url":null,"abstract":"<p><p>Practical delivery of Findable, Accessible, Reusable and Interoperable principles for research data management requires expertise, time resource, (meta)data standards and formats, software tools and public repositories. The Synthetic Biology Open Language (SBOL2) metadata standard enables FAIR sharing of the designs of synthetic biology constructs, notably in the repository of the SynBioHub platform. Large libraries of such constructs are increasingly easy to produce in practice, for example, in DNA foundries. However, manual curation of the equivalent libraries of designs remains cumbersome for a typical lab researcher, creating a barrier to data sharing. Here, we present a simple tool SynBio2Easy, which streamlines and automates operations on multiple Synthetic Biology Open Language (SBOL) designs using <i>Microsoft Excel®</i> tables as metadata inputs. The tool provides several utilities for manipulation of SBOL documents and interaction with SynBioHub: for example, generation of a library of plasmids based on an original design template, bulk deposition into SynBioHub, or annotation of existing SBOL component definitions with notes and authorship information. The tool was used to generate and deposit a collection of 3661 cyanobacterium <i>Synechocystis</i> plasmids into the public SynBioHub repository. In the process of developing the software and uploading these data, we evaluated some aspects of the SynBioHub platform and SBOL ecosystem, and we discuss proposals for improvement that could benefit the user community. With software such as SynBio2Easy, we aim to deliver a user-driven tooling to make FAIR a reality at all stages of the project lifecycle in synthetic biology research. Graphical Abstract.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"7 1","pages":"ysac002"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10841703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gretchen Meinke, Nahide Dalda, Benjamin S Brigham, Andrew Bohm
{"title":"Synthesis of libraries and multi-site mutagenesis using a PCR-derived, dU-containing template.","authors":"Gretchen Meinke, Nahide Dalda, Benjamin S Brigham, Andrew Bohm","doi":"10.1093/synbio/ysaa030","DOIUrl":"https://doi.org/10.1093/synbio/ysaa030","url":null,"abstract":"<p><p>Directed DNA libraries are useful because they focus genetic diversity in the most important regions within a sequence. Ideally, all sequences in such libraries should appear with the same frequency and there should be no significant background from the starting sequence. These properties maximize the number of different sequences that can be screened. Described herein is a method termed SLUPT (Synthesis of Libraries via a dU-containing PCR-derived Template) for generating highly targeted DNA libraries and/or multi-site mutations wherein the altered bases may be widely distributed within a target sequence. This method is highly efficient and modular. Moreover, multiple distinct sites, each with one or more base changes, can be altered in a single reaction. There is very low background from the starting sequence, and SLUPT libraries have similar representation of each base at the positions selected for variation. The SLUPT method utilizes a single-stranded dU-containing DNA template that is made by polymerase chain reaction (PCR). Synthesis of the template in this way is significantly easier than has been described earlier. A series of oligonucleotide primers that are homologous to the template and encode the desired genetic diversity are extended and ligated in a single reaction to form the mutated product sequence or library. After selective inactivation of the template, only the product library is amplified. There are no restrictions on the spacing of the mutagenic primers except that they cannot overlap.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"6 1","pages":"ysaa030"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9770036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J Hammerling, Danielle J Yoesep, Michael C Jewett
{"title":"Single enzyme RT-PCR of full-length ribosomal RNA.","authors":"Michael J Hammerling, Danielle J Yoesep, Michael C Jewett","doi":"10.1093/synbio/ysaa028","DOIUrl":"10.1093/synbio/ysaa028","url":null,"abstract":"<p><p>The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete <i>Escherichia coli</i> 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa028"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/05/df/ysaa028.PMC7772474.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39138445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthetic promoters went green: MinSyns bridge the gap between tunable expression and synthetic biology in plants.","authors":"Andrea Tagliani","doi":"10.1093/synbio/ysaa027","DOIUrl":"https://doi.org/10.1093/synbio/ysaa027","url":null,"abstract":"Precise control of gene expression is critical to allow the design of tunable synthetic gene circuits. To date, our ability to precisely predict orthogonal expression in plants lags well behind that of animals and bacteria. This is largely because traditional attempts to characterize plant promoters have found few reliable sequence patterns. Even the TATA box is found in a minority of plant promoters (1). As a result, plant biologists are still relying on a set of promoters that are not completely orthogonal and that often cannot ensure homogenous expression between different tissues; moreover, the length of these promoters, the local DNA environment of the insertion and other unknown factors often do not allow for tunable and specific expression. Recently, where classical approaches aimed at characterizing a discrete set of cis elements in plant promoters have failed to provide a comprehensive answer, machine learning helped researchers to blaze a new path for synthetic promoter design. In a paper published in Nucleic Acid Research, Cai et al. (2) developed a set of minimal synthetic promoters (MinSyns) by mining from typical promoters used in plant biology a set of rules by which, through a computational approach, the researchers were able to build a set of small standardized cis-regulatory elements (CREs) exploitable for green synthetic biology. The main fodder for the author’s machine learning approach consisted not of plant promoters, but of sequences derived from pathogenic plant viruses, which are widely used in plant biology to drive constitutive expression. They found that small CREs from a set of these promoters are regulated by an endogenous plant transcription factor. Indeed, deletion experiments confirmed the importance of these CREs in regulating expression. The authors used the experimentally determined strength of these CREs to generate a quantitative score for each. They then developed a script, which randomly assembles minimal promoters composed of few CREs for which a score is assigned, based on the relative promoter strength. Using luciferase-based reporter assays, the authors first confirmed that their MinSyn library could be exploited to tune transient expression in plant protoplasts. The authors then selected four MinSyns for further characterization in transgenic plants. MinSyn promoters predictably drove the constitutive expression of GUS or YFP in stable transgenic lines of Arabidopsis thaliana, Brassica rapa and Nicotiana benthamiana plants. Finally, the authors demonstrated that it is possible to build synthetic genetic circuits from MinSyns, allowing tunable expression of two genes and variable expression patterns depending on the number of cognate binding sites for an orthogonal TF. The novelty of this work lies in the organisms themselves. Due to their capacity to produce secondary metabolites and photosynthetic abilities, plants are arguably the most suitable chassis for the production of drugs, sustainable foods, ","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa027"},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysaa027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39443998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Directed evolution of synthetic coexistence: a new path towards ecosystem design?","authors":"Sonja Billerbeck","doi":"10.1093/synbio/ysaa025","DOIUrl":"https://doi.org/10.1093/synbio/ysaa025","url":null,"abstract":"In nature, microorganisms never live alone but rather build interconnected communities, able to perform complex biochemical tasks that are essential to the function of most of earth’s ecosystems. By comparison, the microorganisms we rely on as chassis for synthetic biology lead relatively simple, isolated lives. However, mimicking the natural complexity of microbiomes can help synthetic biologists realize more advanced functionalities; e.g. as shown for the efficient biosynthesis of oxygenated taxanes (precursors of the antitumor agent paclitaxel) in a two-species ecosystem (1). Recently, microbial ecologists demonstrated that it is possible to evolve coexistence between two important synthetic biology chassis in just 100 days, opening the possibility to rapidly assemble synthetic ecosystems by directed evolution (2). Several challenges stand in the way of designing synthetic ecosystems (3). Assuming that adequate cell-to-cell communication is achieved (4), the question of stable coexistence remains. How can differentially engineered species grow together while competing for the same resources and exhibiting different growth rates? Without stable coexistence, engineered ecosystems will quickly disassemble and lose their ability to fulfil their designed task. Current approaches rely on metabolite cross-feeding, but this requires heavy engineering and poses metabolic burden on each ecosystem member (3). Recent findings from the field of microbial ecology could provide a powerful alternative to the coexistence challenge. Researchers from Michael McDonald’s laboratory report in Nature’s ISME Journal that stable cocultures of Escherichia coli and Saccharomyces cerevisiae can be established within 1000 generations (100 days) of directed co-evolution in simple microtiterplate cocultures. Both species compete for the same resources, and E. coli grows faster than S. cerevisiae. Theory predicts that under such strong competition E. coli would drive S. cerevisiae extinct. While this happened in 58 out of their 60 replicate cultures, two cultures still contained both species after an initial 420 generations. The authors then further directed the evolution of coexistence by coculturing the coexisting isolates for another 580 generations in 30 replicates. Eventually four cultures developed stable coexistence at a fixed ratio. Impressively, coculture-evolved S. cerevisiae isolates were able to re-establish this ratio even when inoculated at low cell numbers into a culture of their co-evolved E. coli partner. Ancestral S. cerevisiae was not able to do that, showing that the acquired evolutionary changes were necessary and sufficient to coexist with E. coli. The E. coli partner in return had acquired mutations that enabled it to better access media resources either provided by or not used by its coevolved S. cerevisiae partner, showing the start of evolved dependence or occupation of non-competitive niches. For synthetic biology, these results are important as th","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa025"},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysaa025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39138444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building a custom high-throughput platform at the Joint Genome Institute for DNA construct design and assembly-present and future challenges.","authors":"Ian K Blaby, Jan-Fang Cheng","doi":"10.1093/synbio/ysaa023","DOIUrl":"10.1093/synbio/ysaa023","url":null,"abstract":"<p><p>The rapid design and assembly of synthetic DNA constructs have become a crucial component of biological engineering projects via iterative design-build-test-learn cycles. In this perspective, we provide an overview of the workflows used to generate the thousands of constructs and libraries produced each year at the U.S. Department of Energy Joint Genome Institute. Particular attention is paid to describing pipelines, tools used, types of scientific projects enabled by the platform and challenges faced in further scaling output.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa023"},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysaa023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39852121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}