Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Breschine Cummins, Justin Vrana, Robert C Moseley, Hamed Eramian, Anastasia Deckard, Pedro Fontanarrosa, Daniel Bryce, Mark Weston, George Zheng, Joshua Nowak, Francis C Motta, Mohammed Eslami, Kara Layne Johnson, Robert P Goldman, Chris J Myers, Tessa Johnson, Matthew W Vaughn, Niall Gaffney, Joshua Urrutia, Shweta Gopaulakrishnan, Vanessa Biggers, Trissha R Higa, Lorraine A Mosqueda, Marcio Gameiro, Tomáš Gedeon, Konstantin Mischaikow, Jacob Beal, Bryan Bartley, Tom Mitchell, Tramy T Nguyen, Nicholas Roehner, Steven B Haase
{"title":"Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop.","authors":"Breschine Cummins,&nbsp;Justin Vrana,&nbsp;Robert C Moseley,&nbsp;Hamed Eramian,&nbsp;Anastasia Deckard,&nbsp;Pedro Fontanarrosa,&nbsp;Daniel Bryce,&nbsp;Mark Weston,&nbsp;George Zheng,&nbsp;Joshua Nowak,&nbsp;Francis C Motta,&nbsp;Mohammed Eslami,&nbsp;Kara Layne Johnson,&nbsp;Robert P Goldman,&nbsp;Chris J Myers,&nbsp;Tessa Johnson,&nbsp;Matthew W Vaughn,&nbsp;Niall Gaffney,&nbsp;Joshua Urrutia,&nbsp;Shweta Gopaulakrishnan,&nbsp;Vanessa Biggers,&nbsp;Trissha R Higa,&nbsp;Lorraine A Mosqueda,&nbsp;Marcio Gameiro,&nbsp;Tomáš Gedeon,&nbsp;Konstantin Mischaikow,&nbsp;Jacob Beal,&nbsp;Bryan Bartley,&nbsp;Tom Mitchell,&nbsp;Tramy T Nguyen,&nbsp;Nicholas Roehner,&nbsp;Steven B Haase","doi":"10.1093/synbio/ysad005","DOIUrl":null,"url":null,"abstract":"<p><p>Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. <b>Graphical Abstract</b>.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"8 1","pages":"ysad005"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/51/ysad005.PMC10105856.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysad005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.

Abstract Image

Abstract Image

Abstract Image

使用DBTL回路的简单和复杂合成逻辑电路设计的稳健性和可重复性。
用于构建合成遗传网络的设计-构建-测试-学习(DBTL)循环的各种组件的计算工具已经存在,但通常不涵盖整个DBTL循环。本文介绍了一个端到端的工具序列,它们一起形成一个称为设计组装往返(Design Assemble Round Trip, DART)的DBTL循环。DART提供合理的选择和改进的基因部分,以构建和测试一个电路。通过先前发布的Round Trip (RT)测试-学习循环,为实验过程、元数据管理、标准化数据收集和可重复数据分析提供了计算支持。这项工作的主要重点是工具链的设计组装(DA)部分,它通过使用仅基于电路拓扑的动态行为衍生的新颖鲁棒性评分来筛选多达数千个网络拓扑以获得鲁棒性性能,从而改进了以前的技术。此外,还介绍了用于遗传电路组装的新型实验支持软件。一个完整的设计通过分析序列提出了几个OR和NOR电路设计,有和没有结构冗余,在出芽酵母中实现。DART的执行测试了设计工具的预测,特别是在不同实验条件下的鲁棒性和可重复性。数据分析依赖于机器学习技术的新应用,以分割双峰流式细胞术分布。证据表明,在某些情况下,更复杂的构建可能在实验条件下具有更强的稳健性和可重复性。图形抽象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信