{"title":"Cellular aspects of vasculitis — T cell-mediated aspects","authors":"M. Griffith, C. Pusey","doi":"10.1007/s002810100077","DOIUrl":"https://doi.org/10.1007/s002810100077","url":null,"abstract":"","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"23 1","pages":"287-298"},"PeriodicalIF":0.0,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s002810100077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52139545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The discovery of immunostimulatory DNA sequence","authors":"Saburo Yamamoto, Toshiko Yamamoto, T. Tokunaga","doi":"10.1007/s002810000019","DOIUrl":"https://doi.org/10.1007/s002810000019","url":null,"abstract":"","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"22 1","pages":"11-19"},"PeriodicalIF":0.0,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s002810000019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52137586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fc receptors: their diverse functions in immunity and immune disorders.","authors":"Toshiyuki Takai","doi":"10.1007/s00281-006-0055-y","DOIUrl":"https://doi.org/10.1007/s00281-006-0055-y","url":null,"abstract":"","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"303-4"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0055-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26327269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas C van de Velde, Patricia L Mottram, P Mark Hogarth
{"title":"FcgammaRII and multi-system autoimmune disease.","authors":"Nicholas C van de Velde, Patricia L Mottram, P Mark Hogarth","doi":"10.1007/s00281-006-0056-x","DOIUrl":"https://doi.org/10.1007/s00281-006-0056-x","url":null,"abstract":"<p><p>The FcR are a crucial link in the immune response between humoral and cellular immunity and cell-based effector systems, mediating a wide variety of physiological and biochemical responses. The FcR for IgG (FcgammaR) and in particular the most widely expressed of these, FcgammaRII, are important in regulating adaptive immunity. Disruption of their function is a key factor in the development of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by chronic, multi-organ inflammation. Studies of the FcgammaRII include structure/function relationships, investigation of the associations between FcR polymorphisms and human disease and animal studies using knockout or transgenic mouse models. These investigations showed that the various forms of FcgammaRII interact with immune complexes to either initiate or inhibit inflammation. In conjunction with environmental antigens and genotype, the FcgammaRII activating and inhibitory receptors determine the nature and magnitude of response to antigens. In this review, the structure and function of the FcgammaRIIs and their role in immune complex-mediated auto-immunity are discussed.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"329-38"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0056-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26352203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fcgamma receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity.","authors":"Thomas F Tedder, Aris Baras, Yan Xiu","doi":"10.1007/s00281-006-0057-9","DOIUrl":"https://doi.org/10.1007/s00281-006-0057-9","url":null,"abstract":"<p><p>Immunotherapy using Rituximab, an unconjugated CD20 monoclonal antibody, has proven effective for treating non-Hodgkin's lymphoma and autoimmune disease. CD19 antibody immunotherapy is also effective in mouse models of lymphoma and autoimmunity. In both cases, mouse models have demonstrated that effector cell networks effectively deplete the vast majority of circulating and tissue B lymphocytes through Fcgamma receptor-dependent pathways. In mice, B cell depletion is predominantly, if not exclusively, mediated by monocytes. CD20 mAbs rapidly deplete circulating and tissue B cells in an antibody isotype-restricted manner with a hierarchy of antibody effectiveness: IgG2a/c > IgG1 > IgG2b >> IgG3. Depending on antibody isotype, mouse B cell depletion is regulated by FcgammaRI-, FcgammaRII-, FcgammaRIII-, and FcgammaRIV-dependent pathways. The potency of IgG2a/c mAbs for B cell depletion in vivo results from FcgammaRIV interactions, with likely contributions from high-affinity FcgammaRI. IgG1 mAbs induce B cell depletion through preferential, if not exclusive, interactions with low-affinity FcgammaRIII, while IgG2b mAbs interact preferentially with intermediate-affinity FcgammaRIV. By contrast, inhibitory FcgammaRIIB-deficiency significantly increases CD20 mAb-induced B cell depletion at low mAb doses by enhancing monocyte function. Thus, isotype-specific mAb interactions with distinct FcgammaRs contribute significantly to the effectiveness of CD20 mAbs in vivo. These results provide a molecular basis for earlier observations that human FcgammaRII and FcgammaRIII polymorphisms correlate with the in vivo effectiveness of CD20 antibody therapy. That the innate monocyte network depletes B cells through FcgammaR-dependent pathways during immunotherapy has important clinical implications for CD19, CD20, and other antibody-based therapies for the treatment of diverse B cell malignancies and autoimmune disease.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"351-64"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0057-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26352201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lydie Cassard, Joël Cohen-Solal, Sophie Camilleri-Broët, Emilie Fournier, Wolf Herman Fridman, Catherine Sautès-Fridman
{"title":"Fc gamma receptors and cancer.","authors":"Lydie Cassard, Joël Cohen-Solal, Sophie Camilleri-Broët, Emilie Fournier, Wolf Herman Fridman, Catherine Sautès-Fridman","doi":"10.1007/s00281-006-0058-8","DOIUrl":"https://doi.org/10.1007/s00281-006-0058-8","url":null,"abstract":"<p><p>FcgammaRs are a family of heterogeneous molecules that play opposite roles in immune response and control the effector functions of IgG antibodies. In many cancers, IgG antibodies are produced that recognize cancer cells, form immune complexes and therefore, activate FcgammaR. The therapeutic efficacy of monoclonal IgG antibodies against hematopoietic and epithelial tumors also argue for an important role of IgG antibodies in anti-tumor defenses. Since the 1980s, a series of lines of evidence in experimental models and in humans strongly suggest that FcgammaR are involved in the therapeutic activity of monoclonal IgG antibodies by activating the cytotoxic activity of FcgammaR-positive cells such as NK cells, monocytes, macrophages and neutrophils and by increasing antigen presentation by dendritic cells. Since many cell types co-express activating and inhibitory FcgammaR, the FcgammaR-dependent effector functions of IgG anti-tumor antibodies are counterbalanced by the inhibitory FcgammaRIIB. In addition, some tumor cells express FcgammaR either constitutively, such as B cell lymphomas or ectopically, such as 40% of human metastatic melanoma. The tumor FcgammaR isoform is preferentially FcgammaRIIB, which is functional at least in human metastatic melanoma. This review summarizes these data and discusses how FcgammaRIIB expression may influence the anti-tumor immune reaction and how beneficial or deleterious this expression could be for the efficiency of therapeutics based on monoclonal anti-tumor antibodies.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"321-8"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0058-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26415259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IgA and IgA-specific receptors in human disease: structural and functional insights into pathogenesis and therapeutic potential.","authors":"Michelle M Gomes, Andrew B Herr","doi":"10.1007/s00281-006-0048-x","DOIUrl":"https://doi.org/10.1007/s00281-006-0048-x","url":null,"abstract":"<p><p>IgA antibodies play an important role in humoral immunity. IgA is the predominant antibody in mucosal secretions and the second most prevalent in the serum. It occupies a unique position among human antibodies in that it can both trigger and suppress inflammatory responses, depending on the situation. Recent structural and functional studies have revealed details of the structure of IgA and its interaction with key cell-surface receptors. We look at the role IgA and IgA receptors (particularly FcalphaRI) play in the pathogenesis of diseases such as IgA nephropathy and other autoimmune conditions. Finally, we address the potential of IgA as a therapeutic tool to either trigger specific inflammatory responses to destroy target cells or suppress inflammatory responses in the case of autoimmune diseases, and the promise of mucosal vaccines for eliciting specific IgA responses to pathogens in mucosal environments.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"383-95"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0048-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26311687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The complex role of Fcgamma receptors in the pathology of arthritis.","authors":"Peter Boross, J Sjef Verbeek","doi":"10.1007/s00281-006-0049-9","DOIUrl":"https://doi.org/10.1007/s00281-006-0049-9","url":null,"abstract":"<p><p>Autoantibodies of the IgG class and the immune complexes they form are central players in the pathology of rheumatoid arthritis (RA). Receptors for the Fc part of IgG, FcgammaR constitute one of the main effector mechanisms through which IgG immune complexes exert their action. The different members of the FcgammaR family exhibit extensive structural homology leading to redundancy in ligand specificity and signal transduction. Moreover, the initiation of effector mechanisms by IgG immune complexes can also be mediated by the complement system. This strong redundancy and high degree of complexity hampers a direct in vivo analysis of antibody effector pathways. Over the last decade, mice deficient for different combinations of FcgammaR have been generated by gene targeting. These knockout mice provide excellent tools to define the specific contribution of the different FcgammaR to IgG effector pathways in well-established in vivo mouse models for arthritis. This review will discuss the results of the studies that analyze the role of the different members of the FcgammaR family in murine arthritis models and their implications for our understanding of the human disease.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"339-50"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0049-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26311686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fcepsilon- and Fcgamma-receptor signaling in diseases.","authors":"Zen-Ichiro Honda","doi":"10.1007/s00281-006-0051-2","DOIUrl":"https://doi.org/10.1007/s00281-006-0051-2","url":null,"abstract":"<p><p>It has become increasingly clear that receptors for the immunoglobulin Fc region play pivotal roles in immune homeostasis and disease. This review describes the fine regulation of the high-affinity IgE-receptor (FcepsilonRI) signaling, especially focusing on the early events that are coordinately regulated by Src family protein tyrosine kinases (PTKs), FcepsilonRI beta-subunit, and membrane lipid rafts. Because allergen-mediated FcepsilonRI cross-linking leads to the synthesis and release of a variety of proinflammatory mediators and cytokines, the duration and amplitude of the signal need to be strictly controlled, and the counterbalancing signaling is provided by specialized inhibitory receptors and molecules. However, recent work have revealed that Src family PTKs and FcepsilonRI beta-subunit transduce both positive and negative signaling with unexpectedly complex mechanisms. FcgammaRIIB exerts a unique inhibitory function on cell activation processes after the engagement of Fcgamma, FcepsilonRI and B cell receptors. Recent work has shown that FcgammaRIIB polymorphisms are associated with systemic lupus erythematosus, and that a transmembrane polymorphism in FcgammaRIIB results in an impaired distribution to lipid rafts and a reduced inhibitory function. Studies addressing the functions of disease-associated polymorphisms in the FcepsilonRI beta-subunit and low-affinity FcgammaRs are also considered.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"365-75"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0051-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26365644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular and functional characteristics of the Fcalpha/muR, a novel Fc receptor for IgM and IgA.","authors":"Akira Shibuya, Shin-Ichiro Honda","doi":"10.1007/s00281-006-0050-3","DOIUrl":"https://doi.org/10.1007/s00281-006-0050-3","url":null,"abstract":"<p><p>IgM is the first antibody to be produced in a humoral immune response and is a major isotope of natural antibodies and may play an important role in innate immunity. On the other hand, IgA is a secreted antibody at the mucosal membrane such as the gastrointestinal and respiratory tracts and protects from initial invasion of microbes. However, how these antibodies are involved in immunity has been poorly elucidated. We previously identified a novel Fc receptor for IgA and IgM, designated Fcalpha/mu receptor (Fcalpha/muR), whose gene is closely located at the polymeric immunoglobulin receptor (poly-IgR), also a receptor for IgA and IgM, in the Fc receptor gene cluster on the chromosome 1. In contrast to the the poly-IgR that is expressed on epithelial, but not hematopoietic, cells, Fcalpha/muR is constitutively expressed on the majority of B lymphocytes and macrophages in the spleen and at the center of the secondary lymphoid follicles. The Fcalpha/muR mediates endocytosis Staphylococcus aureus /anti-S. aureus IgM antibody immune complexes by B lymphocytes, for which the dileucine motif in the cytoplasmic tail of the mouse Fcalpha/muR is responsible. These results reveal a new mechanism in the primary stage of immune defense against microbes.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 4","pages":"377-82"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0050-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26327270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}