Quantum Information Processing最新文献

筛选
英文 中文
Novel quantum voting protocol for four-particle entangled states based on superdense coding
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-29 DOI: 10.1007/s11128-025-04663-3
Hao-Wen Zhang, Guang-Bao Xu, Dong-Huan Jiang
{"title":"Novel quantum voting protocol for four-particle entangled states based on superdense coding","authors":"Hao-Wen Zhang,&nbsp;Guang-Bao Xu,&nbsp;Dong-Huan Jiang","doi":"10.1007/s11128-025-04663-3","DOIUrl":"10.1007/s11128-025-04663-3","url":null,"abstract":"<div><p>We propose a novel quantum voting protocol that utilizes superdense coding of four-particle entangled states. The protocol is simultaneously legitimate, anonymous, blind, verifiable and irreducible. In order to prevent malicious tampering of the public content, we introduce the distributed proof of work (PoW) consensus algorithm in blockchain as a database mechanism for voting participants. The voting protocol utilizes four-particle entangled states as a quantum resource to perform only single-particle operations, as well as GHZ basis measurements and <span>(left{ | 0 rangle ,| 1rangle right} )</span>-basis measurements. This means that our protocol can be successfully implemented using existing quantum information processing techniques. We conduct simulation experiments on the proposed voting protocol on the IBM Qiskit platform, and the results show that it is correct and feasible.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing qubit control pulses for state preparation
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-28 DOI: 10.1007/s11128-024-04613-5
Annika S. Wiening, Jörn Bergendahl, Vicente Leyton-Ortega, Peter Nalbach
{"title":"Optimizing qubit control pulses for state preparation","authors":"Annika S. Wiening,&nbsp;Jörn Bergendahl,&nbsp;Vicente Leyton-Ortega,&nbsp;Peter Nalbach","doi":"10.1007/s11128-024-04613-5","DOIUrl":"10.1007/s11128-024-04613-5","url":null,"abstract":"<div><p>In the burgeoning field of quantum computing, the precise design and optimization of quantum pulses are essential for enhancing qubit operation fidelity. This study focuses on refining the pulse engineering techniques for superconducting qubits, employing a detailed analysis of <i>square</i> and <i>Gaussian</i> pulse envelopes under various approximation schemes. We evaluated the effects of coherent errors induced by naive pulse designs. We identified the sources of these errors in the Hamiltonian model’s approximation level. We mitigated these errors through adjustments to the external driving frequency and pulse durations, thus implementing a pulse scheme with stroboscopic error reduction. Our results demonstrate that these refined pulse strategies improve performance and reduce coherent errors. Moreover, the techniques developed herein are applicable across different quantum architectures, such as ion-trap, atomic, and photonic systems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical synthesis of quantum circuits using Q-learning
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-27 DOI: 10.1007/s11128-025-04648-2
Dengli Bu, Zhiyan Bin, Jing Sun
{"title":"Physical synthesis of quantum circuits using Q-learning","authors":"Dengli Bu,&nbsp;Zhiyan Bin,&nbsp;Jing Sun","doi":"10.1007/s11128-025-04648-2","DOIUrl":"10.1007/s11128-025-04648-2","url":null,"abstract":"<div><p>The present status of quantum computing is of the noisy intermediate-scale quantum (NISQ) era. In addition to the limited number of available qubits, NISQ devices generally possess two other physical constraints, quantum gate and interaction constraints. Those constraints should be satisfied in order for realizing a quantum circuit on an NISQ device. However, this often introduces extra CNOT gates into the circuit which harm the fidelity of the resulting circuit. Consequently, the number of extra CNOT gates needs to be reduced while compiling a quantum circuit onto an NISQ device. To this end, here, a solution that uses Q-learning (QL) is proposed by dividing physical synthesis of quantum circuits into qubit placement and routing. QL algorithms are designed for qubit placement and routing, respectively, by considering them as sequential decision-making problems. A physical synthesis method for quantum circuits is proposed by first using a QL algorithm to learn an optimally initial qubit mapping and then using another QL algorithm to learn an optimal routing scheme. A number of quantum circuits are compiled onto quantum architectures provided by IBM and grid architectures by using the proposed synthesis method. Compared to several methods for physical synthesis of quantum circuits, the proposed synthesis method can reduce the number of extra CNOT gates or the depth of the resulted physical quantum circuit in many cases. In a few cases, the QL algorithm designed for qubit placement can find an initial qubit mapping that makes all gates in a circuit being executed on a quantum architecture provided by IBM.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-memory-assisted entropic uncertainty and steered quantum coherence in double quantum dots system under thermal equilibrium and decoherence
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-27 DOI: 10.1007/s11128-025-04661-5
Yanliang Zhang, Guodong Kang, Qingping Zhou, Maofa Fang
{"title":"Quantum-memory-assisted entropic uncertainty and steered quantum coherence in double quantum dots system under thermal equilibrium and decoherence","authors":"Yanliang Zhang,&nbsp;Guodong Kang,&nbsp;Qingping Zhou,&nbsp;Maofa Fang","doi":"10.1007/s11128-025-04661-5","DOIUrl":"10.1007/s11128-025-04661-5","url":null,"abstract":"<div><p>In this paper, we have investigated the behavioral features of quantum-memory-assisted entropic uncertainty (QMA-EU), the lower bound of QMA-EU, and steered quantum coherence (SQC) in double quantum dots system hosting a single electron spin in the presence of external magnetic field and Rashba spin-orbit interaction (SOI) under thermal equilibrium and decoherence conditions, respectively. We find that although the nonlocality and nonclassicality quantified by QMA-EU and SQC deteriorates even disappears as thermal fluctuation dominates the system at higher temperature, the Rashba SOI and tunneling effects between the two quantum dots can be used effectively to enhance the thermal performance of quantumness, which is to enhance the system’s SQC and reduce QMA-EU. However, if the decoherence is taken into account, the Rashba SOI accelerates evolution oscillation frequency of QMA-EU and SQC and even makes the oscillation of them smooth. Furthermore, we reveal that the behavior of SQC with respect to the Rashba SOI and tunneling effects is not strictly opposite to that of QMA-EU.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum cryptanalysis of reduced-round E2 algorithm
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-25 DOI: 10.1007/s11128-025-04649-1
Ying Xu, Xiaoni Du, Meichun Jia, Xiangyu Wang, Jian Zou
{"title":"Quantum cryptanalysis of reduced-round E2 algorithm","authors":"Ying Xu,&nbsp;Xiaoni Du,&nbsp;Meichun Jia,&nbsp;Xiangyu Wang,&nbsp;Jian Zou","doi":"10.1007/s11128-025-04649-1","DOIUrl":"10.1007/s11128-025-04649-1","url":null,"abstract":"<div><p>E2 algorithm is one of the 15 candidate algorithms in the first round of AES collection. In this paper, taking E2-128 as an example, the quantum security analysis on E2 algorithm is proposed for the first time in quantum chosen-plaintext attack setting. First, a polynomial-time distinguisher on 4-round E2-128 is constructed with <span>(2^{12.1})</span> quantum queries by taking the properties of the internal round function into consideration. Then, by extending the distinguisher 2 rounds backward, a 6-round quantum key recovery attack is achieved with the help of Grover-meet-Simon algorithm, whose time complexities gain a factor of <span>(2^{76})</span>, where the subkey length that can be recovered is 152 bits with the occupation of 560 qubits. Furthermore, when attacking <span>(r&gt;6)</span> rounds, <span>(152+(r-6)times 128)</span>-bit subkey needs to be guessed in time <span>(2^{76+(r-6)times 64})</span>, which is <span>(frac{1}{2^{52}})</span> of Grover’s quantum brute force search. Finally, we present a quantum attack against E2-128 with <span>({2^{88.1}})</span> quantum queries by taking initial transformation and terminal transformation into consideration. The result shows that the time complexity of the quantum attack is significantly reduced, and E2 algorithm is safe enough to resist quantum attack.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonreciprocal entanglement and asymmetric steering via magnon Kerr effect in cavity optomagnonic system
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-25 DOI: 10.1007/s11128-025-04658-0
Shuqi Hu, Jiajun Liu, Guangling Cheng, Jiansong Zhang, Aixi Chen
{"title":"Nonreciprocal entanglement and asymmetric steering via magnon Kerr effect in cavity optomagnonic system","authors":"Shuqi Hu,&nbsp;Jiajun Liu,&nbsp;Guangling Cheng,&nbsp;Jiansong Zhang,&nbsp;Aixi Chen","doi":"10.1007/s11128-025-04658-0","DOIUrl":"10.1007/s11128-025-04658-0","url":null,"abstract":"<div><p>We present a scheme to generate nonreciprocal entanglement and asymmetric steering between an atomic ensemble and a magnon based on Kerr nonlinearity of magnon in an yttrium iron garnet sphere. In particular, a cavity optomagnonic system is under our consideration, where the optical cavity couples with an ensemble of <i>N</i> two-level atoms, and meanwhile nonlinearly interacts with the magnon mode via optomagnonic coupling. The results demonstrate that the steady-state macroscopic quantum correlations including magnon-atomic ensemble entanglement and Einstein–Podolsky–Rosen steering could be obtained via strongly driving the cavity mode. More importantly, tuning the direction of the static magnetic field leads to a positive or negative magnon Kerr coefficient, which leads to a corresponding shift in magnon frequency and thus induces the nonreciprocity of entanglement. Furthermore, the one-way steering between magnon and atomic ensemble is also shown via properly choosing the coupling strengths and effective Kerr parameters. Our work could have potential applications in the preparation of macroscopic quantum states and be applied to construct long-distance quantum networks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel lottery protocol based on quantum blockchain
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-24 DOI: 10.1007/s11128-025-04657-1
Yu-Guang Yang, Shi Qiu, Yue-Chao Wang, Guang-Bao Xu, Dong-Huan Jiang
{"title":"A novel lottery protocol based on quantum blockchain","authors":"Yu-Guang Yang,&nbsp;Shi Qiu,&nbsp;Yue-Chao Wang,&nbsp;Guang-Bao Xu,&nbsp;Dong-Huan Jiang","doi":"10.1007/s11128-025-04657-1","DOIUrl":"10.1007/s11128-025-04657-1","url":null,"abstract":"<div><p>The lottery business is a form of gambling activity operated by authority agencies. Due to the substantial economic interests, its security and fairness become the core elements of industry development. To maintain the trust of participants and ensure fair competition, blockchain technology has been widely applied in the lottery field due to the characteristics of decentralization, transparency, and immutability. However, with the rapid advancement of quantum computing, the security of traditional blockchain technology is challenged largely. To tackle this issue, a novel consensus mechanism which can resist quantum attacks is first proposed, based on a self-tallying quantum voting protocol. Then, a quantum circuit is designed, which can encode <i>n</i>-bit binary information into the relative phase of a quantum state and entangle the blocks by means of controlled-Z (CZ) gate, forming a quantum blockchain structure with timestamps. Finally, utilizing the designed quantum blockchain, a new type of lottery protocol is constructed. The proposed protocol meets the requirements of decentralization, unforgeability, verifiability, and quantum attack resistance. Compared to existing lottery protocols, it can support an arbitrary number of players, and only one communication is required for the ticket purchase process of each player, making it suitable for most of lottery game scenarios.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EAQEC codes from the LCD codes decomposition of linear codes
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-24 DOI: 10.1007/s11128-024-04630-4
Hui Li, Xiusheng Liu
{"title":"EAQEC codes from the LCD codes decomposition of linear codes","authors":"Hui Li,&nbsp;Xiusheng Liu","doi":"10.1007/s11128-024-04630-4","DOIUrl":"10.1007/s11128-024-04630-4","url":null,"abstract":"<div><p>In this paper, we provide two new methods of constructing entanglement-assisted quantum error-correcting (EAQEC) codes by using the LCD codes decomposition of linear codes. We first construct a class of maximal entanglement EAQEC maximum distance separable codes via the LCD codes decomposition of generalized Reed–Solomon (GRS) codes over finite fields <span>(mathbb {F}_{2^m})</span>. We then construct two classes of maximal entanglement EAQEC codes based on the LCD codes decomposition of matrix-product codes related to cyclic codes over finite fields <span>(mathbb {F}_{q})</span>. In addition, we construct EAQEC codes with better parameters than the ones available in the literature.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum circuit designs of efficient squaring
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-24 DOI: 10.1007/s11128-025-04647-3
Seong-Min Cho, Changyeol Lee, Seung-Hyun Seo
{"title":"Quantum circuit designs of efficient squaring","authors":"Seong-Min Cho,&nbsp;Changyeol Lee,&nbsp;Seung-Hyun Seo","doi":"10.1007/s11128-025-04647-3","DOIUrl":"10.1007/s11128-025-04647-3","url":null,"abstract":"<div><p>Quantum squaring circuits have been used as helpful arithmetic modules in various quantum algorithms for calculating series expansions or distances of vectors, etc. Quantum multipliers can replace quantum squaring circuits, but squaring with quantum multipliers is inefficient because it involves using quantum gates for unnecessary bitwise multiplication. In this paper, we propose a depth-optimized quantum circuit dedicated to squaring by eliminating these unnecessary quantum gates and implementing quantum gates in parallel. We also discuss the optimal distribution of the partial products to reduce further the gate cost of the quantum adder used for the sum of the partial products. The proposed partial product distribution method lowers the quantum adder’s number of gates and depth by half. Our quantum squaring circuit is the most efficient, with an average improvement of 68% and 79.7% in T-count and T-depth, respectively, compared to existing quantum squaring circuits. Despite the increased qubit counts caused by the depth optimization, we demonstrate that the proposed circuit has the smallest <span>(hbox {KQ}_textrm{T})</span>.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04647-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing quantum approximate optimization with CNN-CVaR integration
IF 2.2 3区 物理与天体物理
Quantum Information Processing Pub Date : 2025-01-24 DOI: 10.1007/s11128-025-04655-3
Pengnian Cai, Kang Shen, Tao Yang, Yuanming Hu, Bin Lv, Liuhuan Fan, Zeyu Liu, Qi Hu, Shixian Chen, Yunlai Zhu, Zuheng Wu, Yuehua Dai, Fei Yang, Jun Wang, Zuyu Xu
{"title":"Enhancing quantum approximate optimization with CNN-CVaR integration","authors":"Pengnian Cai,&nbsp;Kang Shen,&nbsp;Tao Yang,&nbsp;Yuanming Hu,&nbsp;Bin Lv,&nbsp;Liuhuan Fan,&nbsp;Zeyu Liu,&nbsp;Qi Hu,&nbsp;Shixian Chen,&nbsp;Yunlai Zhu,&nbsp;Zuheng Wu,&nbsp;Yuehua Dai,&nbsp;Fei Yang,&nbsp;Jun Wang,&nbsp;Zuyu Xu","doi":"10.1007/s11128-025-04655-3","DOIUrl":"10.1007/s11128-025-04655-3","url":null,"abstract":"<div><p>The quantum approximate optimization algorithm (QAOA) represents a promising approach for tackling combinatorial optimization challenges on near-term quantum devices. Central to QAOA optimization is the minimization of the expectation of the problem Hamiltonian for parameterized trial quantum states, which motivates the exploration of advanced optimization techniques. In this study, we propose a novel combinatorial optimization strategy, CNN-CVaR-QAOA, which integrates a convolutional neural network (CNN) with conditional value at risk (CVaR) to optimize QAOA circuits. By replacing the traditional loss function with CVaR and leveraging CNN for variational quantum parameter optimization, we demonstrate the superior efficacy of CNN-CVaR-QAOA through experimental validation on Erdos–Renyi random graphs. Our results show better solutions across various graph configurations. Furthermore, we investigate the influence of the CVaR parameter (<span>(alpha )</span>) on algorithm performance, revealing that lower <span>(alpha )</span> values lead to smoother objective functions and improved approximation ratios. This work indicates that CNN-CVaR-QAOA offers significant advantages in optimizing QAOA parameters, particularly in the context of near-term intermediate-scale quantum era, highlighting its potential to enhance QAOA optimization efforts across diverse optimization domains.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04655-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信