一维齐次量子马尔可夫链的不变量分布:程序和例子

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
C. F. Lardizabal
{"title":"一维齐次量子马尔可夫链的不变量分布:程序和例子","authors":"C. F. Lardizabal","doi":"10.1007/s11128-025-04923-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the problem of obtaining invariant distributions of quantum Markov chains (QMCs), which are given by positive maps acting on appropriate trace-class spaces. We focus on discrete time statistics for the integer half-line and discuss the notions of fair coin and positive recurrence in such context. Inspired by the theory of quasi-birth-and-death processes as described by G. Latouche and V. Ramaswami, we study a basic algorithm for obtaining the individual entries of distributions of QMCs, describe concrete examples and make comparisons with the classical setting.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant distributions of 1-dimensional homogeneous quantum Markov chains: procedure and examples\",\"authors\":\"C. F. Lardizabal\",\"doi\":\"10.1007/s11128-025-04923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study the problem of obtaining invariant distributions of quantum Markov chains (QMCs), which are given by positive maps acting on appropriate trace-class spaces. We focus on discrete time statistics for the integer half-line and discuss the notions of fair coin and positive recurrence in such context. Inspired by the theory of quasi-birth-and-death processes as described by G. Latouche and V. Ramaswami, we study a basic algorithm for obtaining the individual entries of distributions of QMCs, describe concrete examples and make comparisons with the classical setting.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04923-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04923-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了量子马尔可夫链(qmc)的不变分布问题,它是由作用于适当的迹类空间上的正映射给出的。本文主要讨论整数半线的离散时间统计量,并在此背景下讨论均匀硬币和正递归的概念。受G. Latouche和V. Ramaswami描述的准生灭过程理论的启发,我们研究了一种获取qmc分布的单个条目的基本算法,描述了具体的例子,并与经典设置进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant distributions of 1-dimensional homogeneous quantum Markov chains: procedure and examples

In this work, we study the problem of obtaining invariant distributions of quantum Markov chains (QMCs), which are given by positive maps acting on appropriate trace-class spaces. We focus on discrete time statistics for the integer half-line and discuss the notions of fair coin and positive recurrence in such context. Inspired by the theory of quasi-birth-and-death processes as described by G. Latouche and V. Ramaswami, we study a basic algorithm for obtaining the individual entries of distributions of QMCs, describe concrete examples and make comparisons with the classical setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信