Receptors (Basel, Switzerland)最新文献

筛选
英文 中文
The Neurokinin-1 Receptor: Structure Dynamics and Signaling 神经激肽-1受体:结构动力学和信号传导
Receptors (Basel, Switzerland) Pub Date : 2022-10-08 DOI: 10.3390/receptors1010004
F. D. Rodríguez, R. Coveñas
{"title":"The Neurokinin-1 Receptor: Structure Dynamics and Signaling","authors":"F. D. Rodríguez, R. Coveñas","doi":"10.3390/receptors1010004","DOIUrl":"https://doi.org/10.3390/receptors1010004","url":null,"abstract":"Substance P (SP), the first isolated neuropeptide, belongs to the family of tachykinin peptides and is the natural ligand of neurokinin-1 receptors (NK-1R), also named SP receptors. The undecapeptide activates the receptor after specifically binding to the protein and triggers intracellular signals leading to different biochemical events and subsequent physiological responses. This study reviews the main architectural features of this receptor, its interaction with natural and synthetic ligands, and the functional conformational states adopted after interacting with ligands and effector G proteins. The analysis of the main intracellular signaling pathways turned on by the activation of NK-1 receptors reveals the participation of different proteins supporting metabolic changes and genetic and epigenetic regulations. Furthermore, the analysis of receptor occupancy and receptor downregulation and internalization represents a complex and estimable field for basic and clinical research focused on the role of SP in physiopathology. Profound knowledge of the structural dynamics of NK-1R may help develop and assay new selective synthetic non-peptide antagonists as potential therapeutic agents applied to various pathologies and symptoms.","PeriodicalId":74651,"journal":{"name":"Receptors (Basel, Switzerland)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91278010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Novel Cell Receptor System of Eukaryotes Formed by Previously Unknown Nucleic Acid-Based Receptors 由以前未知的核酸基受体形成的真核生物新的细胞受体系统
Receptors (Basel, Switzerland) Pub Date : 2022-08-09 DOI: 10.3390/receptors1010003
V. Tetz, G. Tetz
{"title":"Novel Cell Receptor System of Eukaryotes Formed by Previously Unknown Nucleic Acid-Based Receptors","authors":"V. Tetz, G. Tetz","doi":"10.3390/receptors1010003","DOIUrl":"https://doi.org/10.3390/receptors1010003","url":null,"abstract":"Here, our data provide the first evidence for the existence of a previously unknown receptive system formed by novel DNA- and RNA-based receptors in eukaryotes. This system, named the TR-system, is capable of recognizing and generating a response to different environmental factors and has been shown to orchestrate major vital functions of fungi, mammalian cells, and plants. Recently, we discovered the existence of a similar regulatory system in prokaryotes. These DNA- and RNA-based receptors are localized outside of the membrane forming a type of a network around cells that responds to a variety of chemical, biological, and physical factors and enabled the TR-system to regulate major aspects of eukaryotic cell life as follows: growth, including reproduction and development of multicellular structures; sensitivity to temperature, geomagnetic field, UV, light, and hormones; interaction with viruses; gene expression, recognition and utilization of nutrients. The TR-system was also implicated in cell-memory formation and was determined to be responsible for its maintenance and the forgetting of preceding events. This system is the most distant receptive and regulatory system of the cell that regulates interactions with the outer environment and governs the functions of other receptor-mediated signaling pathways.","PeriodicalId":74651,"journal":{"name":"Receptors (Basel, Switzerland)","volume":"219 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76600247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Pharmacology of Minor Cannabinoids at the Cannabinoid CB1 Receptor: Isomer- and Ligand-Dependent Antagonism by Tetrahydrocannabivarin 小大麻素对大麻素CB1受体的药理学作用:四氢大麻素的异构体和配体依赖性拮抗作用
Receptors (Basel, Switzerland) Pub Date : 2022-08-02 DOI: 10.3390/receptors1010002
K. Walsh, A. E. Holmes
{"title":"Pharmacology of Minor Cannabinoids at the Cannabinoid CB1 Receptor: Isomer- and Ligand-Dependent Antagonism by Tetrahydrocannabivarin","authors":"K. Walsh, A. E. Holmes","doi":"10.3390/receptors1010002","DOIUrl":"https://doi.org/10.3390/receptors1010002","url":null,"abstract":"(1) Background: In addition to the major phytocannabinoids, trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the cannabis plant (Cannabis sativa L.) synthesizes over 120 additional cannabinoids that are known as minor cannabinoids. These minor cannabinoids have been proposed to act as agonists and antagonists at numerous targets including cannabinoid type 1 (CB1) and type 2 (CB2) receptors, transient receptor potential (TRP) channels and others. The goal of the present study was to determine the agonist effects of the minor cannabinoids: cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabitriol (CBT) and cannabidivarin (CBDV) at the CB1 receptor. In addition, the CB1 receptor antagonist effects of Δ9-tetrahydrocannabivarin (Δ9-THCV) were compared with its isomer Δ8-tetrahydrocannabivarin (Δ8-THCV). (2) Methods: CB1 receptor activity was monitored by measuring cannabinoid activation of G protein-gated inward rectifier K+ (GIRK) channels in AtT20 pituitary cells using a membrane potential-sensitive fluorescent dye assay. (3) Results: When compared to the CB1 receptor full agonist WIN 55,212-2 and the partial agonist Δ9-THC, none of the minor cannabinoids caused a significant activation of Gi/GIRK channel signaling. However, Δ9-THCV and Δ8-THCV antagonized the effect of WIN 55,212-2 with half-maximal inhibitory concentrations (IC50s) of 434 nM and 757 nM, respectively. Δ9-THCV antagonism of the CB1 receptor was “ligand-dependent”; Δ9-THCV was more potent in inhibiting WIN 55,212-2 and 2-arachidonoylglycerol (2-AG) than Δ9-THC. (4) Conclusions: While none of the minor cannabinoids caused Gi/GIRK channel activation, Δ9-THCV antagonized the CB1 receptor in an isomer- and ligand-dependent manner.","PeriodicalId":74651,"journal":{"name":"Receptors (Basel, Switzerland)","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88543336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Excited about Receptors 受体兴奋
Receptors (Basel, Switzerland) Pub Date : 2022-05-13 DOI: 10.3390/receptors1010001
S. Safe
{"title":"Excited about Receptors","authors":"S. Safe","doi":"10.3390/receptors1010001","DOIUrl":"https://doi.org/10.3390/receptors1010001","url":null,"abstract":"Receptors are widely expressed in human tissues and play a key role in maintaining cellular homeostasis and in pathophysiology, and they are important drug targets for the treatment of human diseases [...]","PeriodicalId":74651,"journal":{"name":"Receptors (Basel, Switzerland)","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87003380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信