Pilar Ramos, A. Karnezis, William P. D. Hendricks, Yemin Wang, Waibhav Tembe, V. Zismann, Christophe Legendre, Winnie S. Liang, M. Russell, D. Craig, J. Farley, B. Monk, S. Anthony, A. Sekulic, H. Cunliffe, D. Huntsman, J. Trent
{"title":"Loss of the tumor suppressor SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT)","authors":"Pilar Ramos, A. Karnezis, William P. D. Hendricks, Yemin Wang, Waibhav Tembe, V. Zismann, Christophe Legendre, Winnie S. Liang, M. Russell, D. Craig, J. Farley, B. Monk, S. Anthony, A. Sekulic, H. Cunliffe, D. Huntsman, J. Trent","doi":"10.4161/2167549X.2014.967148","DOIUrl":"https://doi.org/10.4161/2167549X.2014.967148","url":null,"abstract":"Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and understudied cancer with a dismal prognosis. SCCOHT's infrequency has hindered empirical study of its biology and clinical management. However, we and others have recently identified inactivating mutations in the SWI/SNF chromatin remodeling gene SMARCA4 with concomitant loss of SMARCA4 protein in the majority of SCCOHT tumors.1–4 Here we summarize these findings and report SMARCA4 status by targeted sequencing and/or immunohistochemistry (IHC) in an additional 12 SCCOHT tumors, 3 matched germlines, and the cell line SCCOHT-1. We also report the identification of a homozygous inactivating mutation in the gene SMARCB1 in one SCCOHT tumor with wild-type SMARCA4, suggesting that SMARCB1 inactivation may also play a role in the pathogenesis of SCCOHT. To date, SMARCA4 mutations and protein loss have been reported in the majority of 69 SCCOHT cases (including 2 cell lines). These data firmly establish SMARCA4 as a tumor suppressor whose loss promotes the development of SCCOHT, setting the stage for rapid advancement in the biological understanding, diagnosis, and treatment of this rare tumor type.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.967148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motor neuron degeneration in spinal and Bulbar Muscular Atrophy is a skeletal muscle-driven process: Relevance to therapy development and implications for related motor neuron diseases","authors":"Constanza J. Cortes, A. L. La Spada","doi":"10.4161/2167549X.2014.962402","DOIUrl":"https://doi.org/10.4161/2167549X.2014.962402","url":null,"abstract":"Non-cell autonomous degeneration has arisen as an important mechanism in neurodegenerative disorders. Using a novel line of BAC androgen receptor (AR) transgenic mice with a floxed transgene (BAC fxAR121), we uncovered a key role for skeletal muscle in X-linked Spinal and Bulbar Muscular Atrophy (SBMA), a motor neuronopathy caused by a polyglutamine expansion in exon 1 of the AR gene. By excising the mutant AR transgene from muscle only, we achieved complete rescue of neuromuscular phenotypes in these mice, despite retaining strong CNS expression. Furthermore, we delivered an antisense oligonucleotide (ASO) directed against the human AR transgene by peripheral injection, and documented that peripheral ASO delivery could rescue muscle weakness and premature death in BAC fxAR121 mice. Our results reveal a crucial role for skeletal muscle in SBMA disease pathogenesis, and offer an appealing avenue for therapy development for SBMA and perhaps also for related motor neuron diseases.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.962402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70553978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the mechanism by which TRPV4 mutations cause skeletal dysplasias","authors":"H. Leddy, A. McNulty, F. Guilak, W. Liedtke","doi":"10.4161/2167549X.2014.962971","DOIUrl":"https://doi.org/10.4161/2167549X.2014.962971","url":null,"abstract":"Transient Receptor Potential Vanilloid 4 (TRPV4) is a mechano- and osmosensitive cation channel that is highly expressed in chondrocytes, the cells in cartilage. A large number of mutations in TRPV4 have been linked to skeletal dysplasias, and the goal of this addendum is to shed light on the mechanisms by which mutations in TRPV4 can cause skeletal dysplasias by focusing on 3 recent publications. These papers suggest that skeletal dysplasia-causing TRPV4 mutations reprogram chondrocytes to increase follistatin production, which inhibits BMP signaling, thus slowing the process of endochondral ossification and leading to skeletal dysplasia. In spite of these important advances in our understanding of the disease mechanism, much remains to be elucidated. Nonetheless, these new data suggest that inhibiting aberrant TRPV4 activity in the cartilage may be a promising direction for therapeutic intervention.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.962971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The methyl binding domain containing protein MBD5 is a transcriptional regulator responsible for 2q23.1 deletion syndrome","authors":"K. Walz, Juan I. Young","doi":"10.4161/2167549X.2014.967151","DOIUrl":"https://doi.org/10.4161/2167549X.2014.967151","url":null,"abstract":"2Iq23.1 microdeletion syndrome is a recently described rare disease that includes intellectual disability, motor delay, autistic-like behaviors, and craniofacial abnormalities. Dosage insufficiency of the methyl-CpG-binding domain protein 5 (MBD5) gene was suggested as the genetic cause, since all the described patients carry a partial or total heterozygous deletion of MBD5. We reported the generation and characterization of a mouse model with haploinsufficiency for Mbd5 that confirmed this hypothesis. As in human 2q23.1 microdeletion syndrome, the MBD5+/GT mouse model exhibited abnormal social behavior, cognitive impairment, and motor and craniofacial abnormalities, supporting a causal role for MBD5 in 2q23.1 microdeletion syndrome. The use of mouse neuronal cultures uncovered a deficiency in neurite outgrowth, suggesting the participation of MBD5 in neuronal processes. The study of the MBD5+/GT mouse advanced our understanding of the abnormal brain development associated with behavioral and cognitive symptoms.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.967151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Braun, Maximilian Witzel, A. Paruzynski, K. Boztug, C. von Kalle, M. Schmidt, C. Klein
{"title":"Gene therapy for Wiskott-Aldrich Syndrome—Long-term reconstitution and clinical benefits, but increased risk for leukemogenesis","authors":"C. Braun, Maximilian Witzel, A. Paruzynski, K. Boztug, C. von Kalle, M. Schmidt, C. Klein","doi":"10.4161/21675511.2014.947749","DOIUrl":"https://doi.org/10.4161/21675511.2014.947749","url":null,"abstract":"Wiskott-Aldrich-Syndrome (WAS) is a rare X-linked recessive disease caused by mutations of the WAS gene. It is characterized by immunodeficiency, autoimmunity, low numbers of small platelets (microthrombocytopenia) and a high risk of cancer, especially B cell lymphoma and leukemia.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21675511.2014.947749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bum-Ho Bin, Shintaro Hojyo, Tae Ryong Lee, T. Fukada
{"title":"Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13","authors":"Bum-Ho Bin, Shintaro Hojyo, Tae Ryong Lee, T. Fukada","doi":"10.4161/21675511.2014.974982","DOIUrl":"https://doi.org/10.4161/21675511.2014.974982","url":null,"abstract":"The zinc transporter protein ZIP13 plays crucial roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). We recently reported that the pathogenic mutations in ZIP13 reduce its functional protein level by accelerating the protein degradation via the VCP-linked ubiquitin proteasome pathway, resulting in the disturbance of intracellular zinc homeostasis that appears to contribute to SCD-EDS pathogenesis. Finally, we implicate that possible therapeutic approaches for SCD-EDS would be based on regulating the degradation of the pathogenic mutant ZIP13 proteins.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21675511.2014.974982","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TDP-43-The key to understanding amyotrophic lateral sclerosis.","authors":"Zuoshang Xu, Chunxing Yang","doi":"10.4161/21675511.2014.944443","DOIUrl":"https://doi.org/10.4161/21675511.2014.944443","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration leading to progressive muscle atrophy, weakness, paralysis and death. The majority of ALS (>95%) shows intracellular aggregation of transactive response DNA binding protein (TDP-43) as a prominent pathological feature. TDP-43 is normally a nuclear protein. In ALS, TDP-43 accumulates and aggregates in the cytoplasm (thus forming TDP-43 proteinopathy) and is depleted from the nucleus in CNS cells, including motor neurons and glia. While TDP-43 aggregation can harm cells through a gain of toxicity, it can also cause a loss of TDP-43 function in conjunction with its nuclear depletion. TDP-43 regulates its own expression to maintain itself at a constant level. Perturbation of this level by either increasing or decreasing TDP-43 in animal models leads to neurodegeneration and ALS phenotypes. The evidence supports the hypothesis that TDP-43 dysfunction is a critical driver of neurodegeneration in the vast majority of ALS cases. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":"e944443"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21675511.2014.944443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9355855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Giordani, M. Sandonà, A. Rotini, P. L. Puri, S. Consalvi, V. Saccone
{"title":"Muscle-specific microRNAs as biomarkers of Duchenne Muscular Dystrophy progression and response to therapies","authors":"Lorenzo Giordani, M. Sandonà, A. Rotini, P. L. Puri, S. Consalvi, V. Saccone","doi":"10.4161/21675511.2014.974969","DOIUrl":"https://doi.org/10.4161/21675511.2014.974969","url":null,"abstract":"Recent studies have revealed the contribution of fibro-adipogenic progenitors (FAPs) to the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). While FAPs direct compensatory regeneration at early stages of disease, as the disease progresses they contribute to the progressive replacement of contractile myofibers with fibrotic scars and fatty infiltration. Using the mouse model of DMD – the mdx mice - we have recently reported that FAPs mediate the ability of HDAC inhibitors (HDACi) to promote muscle regeneration and prevent fibro-adipogenic degeneration at early stages of disease. This effect is mediated by the induction of myomiRs that, in turn, target the SWI/SNF components BAF60A and B, thereby favoring the formation of BAF60C-based SWI/SNF complex, which directs the switch from the fibro-adipogenic to the myogenic lineage. Here we show direct evidence of induction of miR-206 and BAF60C, and reduction of BAF60A, in FAPs isolated from mdx muscles exposed to the HDACi Trichostatin A (TSA). We also discuss how increased expression of myomiRs in dystrophic muscles can be integrated with circulating myomiRs to provide accurate biomarkers of disease progression and response to treatment.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21675511.2014.974969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impaired striatal function in Huntington's disease is due to aberrant p75NTR signaling","authors":"Joshua L. Plotkin, D. Surmeier","doi":"10.4161/2167549X.2014.968482","DOIUrl":"https://doi.org/10.4161/2167549X.2014.968482","url":null,"abstract":"Huntington's disease (HD) is a rare genetic neurodegenerative disorder for which there is currently no cure. Early hyperkinetic motor symptoms are consistent with reduced activity of indirect pathway striatal projection neurons (iSPNs) responsible for suppression of unwanted actions. Our recent work suggests that one of the factors contributing to this deficit is impaired brain-derived neurotrophic factor (BDNF) signaling that regulates the strength of iSPN excitatory synapses. Specifically, we found that BDNF-dependent corticostriatal synaptic long-term potentiation (LTP) was lost in iSPNs from 2 genetic models of HD, just as they began to robustly manifest motor symptoms. This deficit was not attributable to problems in BDNF production, delivery or receptor binding. Rather, the plasticity deficit stemmed from enhanced signaling through p75 neurotrophin receptors (p75NTRs) and the phosphatase and tensin homolog (PTEN), leading to antagonism of intracellular TrkBR cascades and LTP. This study suggests HD therapeutics should target p75NTR signaling, not TrkBR.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.968482","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70554252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alkaptonuria.","authors":"Jemma B Mistry, Marwan Bukhari, Adam M Taylor","doi":"10.4161/rdis.27475","DOIUrl":"https://doi.org/10.4161/rdis.27475","url":null,"abstract":"<p><p>Alkaptonuria (AKU) is a rare disorder of autosomal recessive inheritance. It is caused by a mutation in a gene that results in the accumulation of homogentisic acid (HGA). Characteristically, the excess HGA means sufferers pass dark urine, which upon standing turns black. This is a feature present from birth. Over time patients develop other manifestations of AKU, due to deposition of HGA in collagenous tissues, namely ochronosis and ochronotic osteoarthropathy. Although this condition does not reduce life expectancy, it significantly affects quality of life. The natural history of this condition is becoming better understood, despite gaps in knowledge. Clinical assessment of the condition has also improved along with the development of a potentially disease-modifying therapy. Furthermore, recent developments in AKU research have led to new understanding of the disease, and further study of the AKU arthropathy has the potential to influence therapy in the management of osteoarthritis. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"1 ","pages":"e27475"},"PeriodicalIF":0.0,"publicationDate":"2013-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/rdis.27475","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32488203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}