{"title":"tdp -43-了解肌萎缩侧索硬化的关键。","authors":"Zuoshang Xu, Chunxing Yang","doi":"10.4161/21675511.2014.944443","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration leading to progressive muscle atrophy, weakness, paralysis and death. The majority of ALS (>95%) shows intracellular aggregation of transactive response DNA binding protein (TDP-43) as a prominent pathological feature. TDP-43 is normally a nuclear protein. In ALS, TDP-43 accumulates and aggregates in the cytoplasm (thus forming TDP-43 proteinopathy) and is depleted from the nucleus in CNS cells, including motor neurons and glia. While TDP-43 aggregation can harm cells through a gain of toxicity, it can also cause a loss of TDP-43 function in conjunction with its nuclear depletion. TDP-43 regulates its own expression to maintain itself at a constant level. Perturbation of this level by either increasing or decreasing TDP-43 in animal models leads to neurodegeneration and ALS phenotypes. The evidence supports the hypothesis that TDP-43 dysfunction is a critical driver of neurodegeneration in the vast majority of ALS cases. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"2 1","pages":"e944443"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21675511.2014.944443","citationCount":"17","resultStr":"{\"title\":\"TDP-43-The key to understanding amyotrophic lateral sclerosis.\",\"authors\":\"Zuoshang Xu, Chunxing Yang\",\"doi\":\"10.4161/21675511.2014.944443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration leading to progressive muscle atrophy, weakness, paralysis and death. The majority of ALS (>95%) shows intracellular aggregation of transactive response DNA binding protein (TDP-43) as a prominent pathological feature. TDP-43 is normally a nuclear protein. In ALS, TDP-43 accumulates and aggregates in the cytoplasm (thus forming TDP-43 proteinopathy) and is depleted from the nucleus in CNS cells, including motor neurons and glia. While TDP-43 aggregation can harm cells through a gain of toxicity, it can also cause a loss of TDP-43 function in conjunction with its nuclear depletion. TDP-43 regulates its own expression to maintain itself at a constant level. Perturbation of this level by either increasing or decreasing TDP-43 in animal models leads to neurodegeneration and ALS phenotypes. The evidence supports the hypothesis that TDP-43 dysfunction is a critical driver of neurodegeneration in the vast majority of ALS cases. </p>\",\"PeriodicalId\":74639,\"journal\":{\"name\":\"Rare diseases (Austin, Tex.)\",\"volume\":\"2 1\",\"pages\":\"e944443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/21675511.2014.944443\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare diseases (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/21675511.2014.944443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/21675511.2014.944443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TDP-43-The key to understanding amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration leading to progressive muscle atrophy, weakness, paralysis and death. The majority of ALS (>95%) shows intracellular aggregation of transactive response DNA binding protein (TDP-43) as a prominent pathological feature. TDP-43 is normally a nuclear protein. In ALS, TDP-43 accumulates and aggregates in the cytoplasm (thus forming TDP-43 proteinopathy) and is depleted from the nucleus in CNS cells, including motor neurons and glia. While TDP-43 aggregation can harm cells through a gain of toxicity, it can also cause a loss of TDP-43 function in conjunction with its nuclear depletion. TDP-43 regulates its own expression to maintain itself at a constant level. Perturbation of this level by either increasing or decreasing TDP-43 in animal models leads to neurodegeneration and ALS phenotypes. The evidence supports the hypothesis that TDP-43 dysfunction is a critical driver of neurodegeneration in the vast majority of ALS cases.