Yanjun Gao, Dmitriy Dligach, Timothy Miller, Matthew M Churpek, Majid Afshar
{"title":"Overview of the Problem List Summarization (ProbSum) 2023 Shared Task on Summarizing Patients' Active Diagnoses and Problems from Electronic Health Record Progress Notes.","authors":"Yanjun Gao, Dmitriy Dligach, Timothy Miller, Matthew M Churpek, Majid Afshar","doi":"10.18653/v1/2023.bionlp-1.43","DOIUrl":"https://doi.org/10.18653/v1/2023.bionlp-1.43","url":null,"abstract":"<p><p>The BioNLP Workshop 2023 initiated the launch of a shared task on Problem List Summarization (ProbSum) in January 2023. The aim of this shared task is to attract future research efforts in building NLP models for real-world diagnostic decision support applications, where a system generating relevant and accurate diagnoses will augment the healthcare providers' decision-making process and improve the quality of care for patients. The goal for participants is to develop models that generated a list of diagnoses and problems using input from the daily care notes collected from the hospitalization of critically ill patients. Eight teams submitted their final systems to the shared task leaderboard. In this paper, we describe the tasks, datasets, evaluation metrics, and baseline systems. Additionally, the techniques and results of the evaluation of the different approaches tried by the participating teams are summarized.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2023 ","pages":"461-467"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426335/pdf/nihms-1923203.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10017111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy Miller, Steven Bethard, Dmitriy Dligach, Guergana Savova
{"title":"End-to-end clinical temporal information extraction with multi-head attention.","authors":"Timothy Miller, Steven Bethard, Dmitriy Dligach, Guergana Savova","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding temporal relationships in text from electronic health records can be valuable for many important downstream clinical applications. Since Clinical TempEval 2017, there has been little work on end-to-end systems for temporal relation extraction, with most work focused on the setting where gold standard events and time expressions are given. In this work, we make use of a novel multi-headed attention mechanism on top of a pre-trained transformer encoder to allow the learning process to attend to multiple aspects of the contextualized embeddings. Our system achieves state of the art results on the THYME corpus by a wide margin, in both the in-domain and cross-domain settings.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2023 ","pages":"313-319"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540151/pdf/nihms-1921256.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brihat Sharma, Yanjun Gao, Timothy Miller, Matthew M Churpek, Majid Afshar, Dmitriy Dligach
{"title":"Multi-Task Training with In-Domain Language Models for Diagnostic Reasoning.","authors":"Brihat Sharma, Yanjun Gao, Timothy Miller, Matthew M Churpek, Majid Afshar, Dmitriy Dligach","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Generative artificial intelligence (AI) is a promising direction for augmenting clinical diagnostic decision support and reducing diagnostic errors, a leading contributor to medical errors. To further the development of clinical AI systems, the Diagnostic Reasoning Benchmark (DR.BENCH) was introduced as a comprehensive generative AI framework, comprised of six tasks representing key components in clinical reasoning. We present a comparative analysis of in-domain versus out-of-domain language models as well as multi-task versus single task training with a focus on the problem summarization task in DR.BENCH (Gao et al., 2023). We demonstrate that a multi-task, clinically-trained language model outperforms its general domain counterpart by a large margin, establishing a new state-of-the-art performance, with a ROUGE-L score of 28.55. This research underscores the value of domain-specific training for optimizing clinical diagnostic reasoning tasks.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2023 ClinicalNLP","pages":"78-85"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368094/pdf/nihms-1917256.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9875499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy Miller, S. Bethard, Dmitriy Dligach, G. Savova
{"title":"End-to-end clinical temporal information extraction with multi-head attention","authors":"Timothy Miller, S. Bethard, Dmitriy Dligach, G. Savova","doi":"10.18653/v1/2023.bionlp-1.28","DOIUrl":"https://doi.org/10.18653/v1/2023.bionlp-1.28","url":null,"abstract":"Understanding temporal relationships in text from electronic health records can be valuable for many important downstream clinical applications. Since Clinical TempEval 2017, there has been little work on end-to-end systems for temporal relation extraction, with most work focused on the setting where gold standard events and time expressions are given. In this work, we make use of a novel multi-headed attention mechanism on top of a pre-trained transformer encoder to allow the learning process to attend to multiple aspects of the contextualized embeddings. Our system achieves state of the art results on the THYME corpus by a wide margin, in both the in-domain and cross-domain settings.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"37 1","pages":"313-319"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88268814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanjun Gao, Dmitriy Dligach, Timothy Miller, M. Churpek, M. Afshar
{"title":"Overview of the Problem List Summarization (ProbSum) 2023 Shared Task on Summarizing Patients’ Active Diagnoses and Problems from Electronic Health Record Progress Notes","authors":"Yanjun Gao, Dmitriy Dligach, Timothy Miller, M. Churpek, M. Afshar","doi":"10.48550/arXiv.2306.05270","DOIUrl":"https://doi.org/10.48550/arXiv.2306.05270","url":null,"abstract":"The BioNLP Workshop 2023 initiated the launch of a shared task on Problem List Summarization (ProbSum) in January 2023. The aim of this shared task is to attract future research efforts in building NLP models for real-world diagnostic decision support applications, where a system generating relevant and accurate diagnoses will augment the healthcare providers’ decision-making process and improve the quality of care for patients. The goal for participants is to develop models that generated a list of diagnoses and problems using input from the daily care notes collected from the hospitalization of critically ill patients. Eight teams submitted their final systems to the shared task leaderboard. In this paper, we describe the tasks, datasets, evaluation metrics, and baseline systems. Additionally, the techniques and results of the evaluation of the different approaches tried by the participating teams are summarized.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"1 1","pages":"461-467"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90235599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Sharma, Yanjun Gao, Timothy Miller, M. Churpek, M. Afshar, Dmitriy Dligach
{"title":"Multi-Task Training with In-Domain Language Models for Diagnostic Reasoning","authors":"B. Sharma, Yanjun Gao, Timothy Miller, M. Churpek, M. Afshar, Dmitriy Dligach","doi":"10.48550/arXiv.2306.04551","DOIUrl":"https://doi.org/10.48550/arXiv.2306.04551","url":null,"abstract":"Generative artificial intelligence (AI) is a promising direction for augmenting clinical diagnostic decision support and reducing diagnostic errors, a leading contributor to medical errors. To further the development of clinical AI systems, the Diagnostic Reasoning Benchmark (DR.BENCH) was introduced as a comprehensive generative AI framework, comprised of six tasks representing key components in clinical reasoning. We present a comparative analysis of in-domain versus out-of-domain language models as well as multi-task versus single task training with a focus on the problem summarization task in DR.BENCH. We demonstrate that a multi-task, clinically-trained language model outperforms its general domain counterpart by a large margin, establishing a new state-of-the-art performance, with a ROUGE-L score of 28.55. This research underscores the value of domain-specific training for optimizing clinical diagnostic reasoning tasks.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2 1","pages":"78-85"},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78774047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Less Likely Brainstorming: Using Language Models to Generate Alternative Hypotheses","authors":"Liyan Tang, Yifan Peng, Yanshan Wang, Ying Ding, Greg Durrett, Justin F. Rousseau","doi":"10.48550/arXiv.2305.19339","DOIUrl":"https://doi.org/10.48550/arXiv.2305.19339","url":null,"abstract":"A human decision-maker benefits the most from an AI assistant that corrects for their biases. For problems such as generating interpretation of a radiology report given findings, a system predicting only highly likely outcomes may be less useful, where such outcomes are already obvious to the user. To alleviate biases in human decision-making, it is worth considering a broad differential diagnosis, going beyond the most likely options. We introduce a new task, \"less likely brainstorming,\" that asks a model to generate outputs that humans think are relevant but less likely to happen. We explore the task in two settings: a brain MRI interpretation generation setting and an everyday commonsense reasoning setting. We found that a baseline approach of training with less likely hypotheses as targets generates outputs that humans evaluate as either likely or irrelevant nearly half of the time; standard MLE training is not effective. To tackle this problem, we propose a controlled text generation method that uses a novel contrastive learning strategy to encourage models to differentiate between generating likely and less likely outputs according to humans. We compare our method with several state-of-the-art controlled text generation models via automatic and human evaluations and show that our models' capability of generating less likely outputs is improved.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"1 1","pages":"12532-12555"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83485059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting Relation Extraction in the era of Large Language Models","authors":"Somin Wadhwa, Silvio Amir, Byron C. Wallace","doi":"10.48550/arXiv.2305.05003","DOIUrl":"https://doi.org/10.48550/arXiv.2305.05003","url":null,"abstract":"Relation extraction (RE) is the core NLP task of inferring semantic relationships between entities from text. Standard supervised RE techniques entail training modules to tag tokens comprising entity spans and then predict the relationship between them. Recent work has instead treated the problem as a sequence-to-sequence task, linearizing relations between entities as target strings to be generated conditioned on the input. Here we push the limits of this approach, using larger language models (GPT-3 and Flan-T5 large) than considered in prior work and evaluating their performance on standard RE tasks under varying levels of supervision. We address issues inherent to evaluating generative approaches to RE by doing human evaluations, in lieu of relying on exact matching. Under this refined evaluation, we find that: (1) Few-shot prompting with GPT-3 achieves near SOTA performance, i.e., roughly equivalent to existing fully supervised models; (2) Flan-T5 is not as capable in the few-shot setting, but supervising and fine-tuning it with Chain-of-Thought (CoT) style explanations (generated via GPT-3) yields SOTA results. We release this model as a new baseline for RE tasks.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"256 1","pages":"15566-15589"},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89059389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatically Summarizing Evidence from Clinical Trials: A Prototype Highlighting Current Challenges.","authors":"Sanjana Ramprasad, Iain J Marshall, Denis Jered McInerney, Byron C Wallace","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We present <i>TrialsSummarizer</i>, a system that aims to automatically summarize evidence presented in the set of randomized controlled trials most relevant to a given query. Building on prior work (Marshall et al., 2020), the system retrieves trial publications matching a query specifying a combination of condition, intervention(s), and outcome(s), and ranks these according to sample size and estimated study quality. The top-<i>k</i> such studies are passed through a neural multi-document summarization system, yielding a synopsis of these trials. We consider two architectures: A standard sequence-to-sequence model based on BART (Lewis et al., 2019), and a multi-headed architecture intended to provide greater transparency to end-users. Both models produce fluent and relevant summaries of evidence retrieved for queries, but their tendency to introduce unsupported statements render them inappropriate for use in this domain at present. The proposed architecture may help users verify outputs allowing users to trace generated tokens back to inputs. The demonstration video is available at: https://vimeo.com/735605060 The prototype, source code, and model weights are available at: https://sanjanaramprasad.github.io/trials-summarizer/.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2023 ","pages":"236-247"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361334/pdf/nihms-1912129.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10240091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Carrella, Alessandro Miani, Stephan Lewandowsky
{"title":"IRMA: the 335-million-word Italian coRpus for studying MisinformAtion.","authors":"Fabio Carrella, Alessandro Miani, Stephan Lewandowsky","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The dissemination of false information on the internet has received considerable attention over the last decade. Misinformation often spreads faster than mainstream news, thus making manual fact checking inefficient or, at best, labor-intensive. Therefore, there is an increasing need to develop methods for automatic detection of misinformation. Although resources for creating such methods are available in English, other languages are often underrepresented in this effort. With this contribution, we present IRMA, a corpus containing over 600,000 Italian news articles (335+ million tokens) collected from 56 websites classified as 'untrustworthy' by professional factcheckers. The corpus is freely available and comprises a rich set of text- and website-level data, representing a turnkey resource to test hypotheses and develop automatic detection algorithms. It contains texts, titles, and dates (from 2004 to 2022), along with three types of semantic measures (i.e., keywords, topics at three different resolutions, and LIWC lexical features). IRMA also includes domainspecific information such as source type (e.g., political, health, conspiracy, etc.), quality, and higher-level metadata, including several metrics of website incoming traffic that allow to investigate user online behavior. IRMA constitutes the largest corpus of misinformation available today in Italian, making it a valid tool for advancing quantitative research on untrustworthy news detection and ultimately helping limit the spread of misinformation.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2023 ","pages":"2339-2349"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138300729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}