Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management最新文献
Konstantin Tretyakov, Abel Armas-Cervantes, L. García-Bañuelos, J. Vilo, M. Dumas
{"title":"Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs","authors":"Konstantin Tretyakov, Abel Armas-Cervantes, L. García-Bañuelos, J. Vilo, M. Dumas","doi":"10.1145/2063576.2063834","DOIUrl":"https://doi.org/10.1145/2063576.2063834","url":null,"abstract":"Computing the shortest path between a pair of vertices in a graph is a fundamental primitive in graph algorithmics. Classical exact methods for this problem do not scale up to contemporary, rapidly evolving social networks with hundreds of millions of users and billions of connections. A number of approximate methods have been proposed, including several landmark-based methods that have been shown to scale up to very large graphs with acceptable accuracy. This paper presents two improvements to existing landmark-based shortest path estimation methods. The first improvement relates to the use of shortest-path trees (SPTs). Together with appropriate short-cutting heuristics, the use of SPTs allows to achieve higher accuracy with acceptable time and memory overhead. Furthermore, SPTs can be maintained incrementally under edge insertions and deletions, which allows for a fully-dynamic algorithm. The second improvement is a new landmark selection strategy that seeks to maximize the coverage of all shortest paths by the selected landmarks. The improved method is evaluated on the DBLP, Orkut, Twitter and Skype social networks.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"15 1","pages":"1785-1794"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82523921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retrieving and ranking unannotated images through collaboratively mining online search results","authors":"Songhua Xu, Hao Jiang, F. Lau","doi":"10.1145/2063576.2063650","DOIUrl":"https://doi.org/10.1145/2063576.2063650","url":null,"abstract":"We present a new image search and ranking algorithm for retrieving unannotated images by collaboratively mining online search results which consist of online image and text search results. The online image search results are leveraged as reference examples to perform content-based image search over unannotated images. The online text search results are utilized to estimate the reference images' relevance to the search query. The key feature of our method is its capability to deal with unreliable online image search results through jointly mining visual and textual aspects of online search results. Through such collaborative mining, our algorithm infers the relevance of an online search result image to a text query. Once we obtain the estimate of query relevance score for each online image search result, we can selectively use query specific online search result images as reference examples for retrieving and ranking unannotated images. We tested our algorithm both on the standard public image datasets and several modestly sized personal photo collections. We also compared our method with two well-known peer methods. The results indicate that our algorithm is superior to existing content-based image search algorithms for retrieving and ranking unannotated images.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"25 1","pages":"485-494"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80909168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrey Styskin, Fedor Romanenko, F. Vorobyev, P. Serdyukov
{"title":"Recency ranking by diversification of result set","authors":"Andrey Styskin, Fedor Romanenko, F. Vorobyev, P. Serdyukov","doi":"10.1145/2063576.2063862","DOIUrl":"https://doi.org/10.1145/2063576.2063862","url":null,"abstract":"In this paper, we propose a web search retrieval approach which automatically detects recency sensitive queries and increases the freshness of the ordinary document ranking by a degree proportional to the probability of the need in recent content. We propose to solve the recency ranking problem by using result diversification principles and deal with the query's non-topical ambiguity appearing when the need in recent content can be detected only with uncertainty. Our offine and online experiments with millions of queries from real search engine users demonstrate the significant increase in satisfaction of users presented with a search result generated by our approach.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"25 1","pages":"1949-1952"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83308498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Managing interoperability and complexity inhealth systems: MIXHS'11 workshop summary","authors":"M. Bouamrane, C. Tao","doi":"10.1145/2063576.2064050","DOIUrl":"https://doi.org/10.1145/2063576.2064050","url":null,"abstract":"Managing Interoperability and Complexity in Health Systems, MIXHS'11, aims to be a forum focussing on recent research and technical results in knowledge management and information systems in bio-medical and electronic health systems. The workshop will provide an opportunity for sharing practical experiences and best practices in e-Health information infrastructure development and management. Of particular interest to the workshop themes are technical solutions to recurring practical systems deployment issues, including harnessing the complexity of bio-medical domain knowledge and the interoperability of heterogeneous health systems. The workshop will gather experts, researchers, system developers, practitioners and policymakers designing and implementing solutions for managing clinical data and integrating existing and future electronic health systems infrastructures.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"115 1","pages":"2635-2636"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89313577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Duplicate detection through structure optimization","authors":"Luís Leitão, P. Calado","doi":"10.1145/2063576.2063644","DOIUrl":"https://doi.org/10.1145/2063576.2063644","url":null,"abstract":"Detecting and eliminating duplicates in databases is a task of critical importance in many applications. Although solutions for traditional models, such as relational data, have been widely studied, recently there has been some focus on solutions for more complex hierarchical structures as, for instance, XML data. Such data presents many different challenges, among which is the issue of how to exploit the schema structure to determine if two objects are duplicates. In this paper, we argue that structure can indeed have a significant impact on the process of duplicate detection. We propose a novel method that automatically restructures database objects in order to take full advantage of the relations between its attributes. This new structure reflects the relative importance of the attributes in the database and avoids the need to perform a manual selection. To test our approach we applied it to an existing duplicate detection system. Experiments performed on several datasets show that, using the new learned structure, we consistently outperform both the results obtained with the original database structure and those obtained by letting a knowledgeable user manually choose the attributes to compare.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"12 1","pages":"443-452"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89826857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sundararajan Sellamanickam, Priyanka Garg, S. Keerthi
{"title":"A pairwise ranking based approach to learning with positive and unlabeled examples","authors":"Sundararajan Sellamanickam, Priyanka Garg, S. Keerthi","doi":"10.1145/2063576.2063675","DOIUrl":"https://doi.org/10.1145/2063576.2063675","url":null,"abstract":"A large fraction of binary classification problems arising in web applications are of the type where the positive class is well defined and compact while the negative class comprises everything else in the distribution for which the classifier is developed; it is hard to represent and sample from such a broad negative class. Classifiers based only on positive and unlabeled examples reduce human annotation effort significantly by removing the burden of choosing a representative set of negative examples. Various methods have been proposed in the literature for building such classifiers. Of these, the state of the art methods are Biased SVM and Elkan & Noto's methods. While these methods often work well in practice, they are computationally expensive since hyperparameter tuning is very important, particularly when the size of labeled positive examples set is small and class imbalance is high. In this paper we propose a pairwise ranking based approach to learn from positive and unlabeled examples (LPU) and we give a theoretical justification for it. We present a pairwise RankSVM (RSVM) based method for our approach. The method is simple, efficient, and its hyperparameters are easy to tune. A detailed experimental study using several benchmark datasets shows that the proposed method gives competitive classification performance compared to the mentioned state of the art methods, while training 3-10 times faster. We also propose an efficient AUC based feature selection technique in the LPU setting and demonstrate its usefulness on the datasets. To get an idea of the goodness of the LPU methods we compare them against supervised learning (SL) methods that also make use of negative examples in training. SL methods give a slightly better performance than LPU methods when there is a rich set of negative examples; however, they are inferior when the number of negative training examples is not large enough.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"7 1","pages":"663-672"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89862696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ranking-based processing of SQL queries","authors":"H. Azzam, T. Roelleke, Sirvan Yahyaei","doi":"10.1145/2063576.2063614","DOIUrl":"https://doi.org/10.1145/2063576.2063614","url":null,"abstract":"A growing number of applications are built on top of search engines and issue complex structured queries. This paper contributes a customisable ranking-based processing of such queries, specifically SQL. Similar to how term-based statistics are exploited by term-based retrieval models, ranking-aware processing of SQL queries exploits tuple-based statistics that are derived from sources or, more precisely, derived from the relations specified in the SQL query. To implement this ranking-based processing, we leverage PSQL, a probabilistic variant of SQL, to facilitate probability estimation and the generalisation of document retrieval models to be used for tuple retrieval. The result is a general-purpose framework that can interpret any SQL query and then assign a probabilistic retrieval model to rank the results of that query. The evaluation on the IMDB and Monster benchmarks proves that the PSQL-based approach is applicable to (semi-)structured and unstructured data and structured queries.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"35 1","pages":"231-236"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86505244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Content-driven detection of campaigns in social media","authors":"Kyumin Lee, James Caverlee, Zhiyuan Cheng, D. Sui","doi":"10.1145/2063576.2063658","DOIUrl":"https://doi.org/10.1145/2063576.2063658","url":null,"abstract":"We study the problem of detecting coordinated free text campaigns in large-scale social media. These campaigns -- ranging from coordinated spam messages to promotional and advertising campaigns to political astro-turfing -- are growing in significance and reach with the commensurate rise of massive-scale social systems. Often linked by common \"talking points\", there has been little research in detecting these campaigns. Hence, we propose and evaluate a content-driven framework for effectively linking free text posts with common \"talking points\" and extracting campaigns from large-scale social media. One of the salient aspects of the framework is an investigation of graph mining techniques for isolating coherent campaigns from large message-based graphs. Through an experimental study over millions of Twitter messages we identify five major types of campaigns -- Spam, Promotion, Template, News, and Celebrity campaigns -- and we show how these campaigns may be extracted with high precision and recall.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"12 1","pages":"551-556"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87806973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WikiLabel: an encyclopedic approach to labeling documents en masse","authors":"Tadashi Nomoto","doi":"10.1145/2063576.2063961","DOIUrl":"https://doi.org/10.1145/2063576.2063961","url":null,"abstract":"This paper presents a particular approach to collective labeling of multiple documents, which works by associating the documents with Wikipedia pages and labeling them with headings the pages carry. The approach has an obvious advantage over past approaches in that it is able to produce fluent labels, as they are hand-written by human editors. We carried out some experiments on the TDT5 dataset, which found that the approach works rather robustly for an arbitrary set of documents in the news domain. Comparisons were made with some baselines, including the state of the art, with results strongly in favor of our approach.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"124 1","pages":"2341-2344"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87831992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Latent feature encoding using dyadic and relational data","authors":"S. Ando","doi":"10.1145/2063576.2063926","DOIUrl":"https://doi.org/10.1145/2063576.2063926","url":null,"abstract":"Learning from dyadic and relational data is a fundamental problem for IR and KDD applications in web and social media domain. Basic behaviors and characteristics of users and documents are typically described by a collection of dyads, i.e., pairs of entities. Discriminative features extracted from such data are essential in exploratory and discriminatory analyses. Relational properties of the entities reflect pair-wise similarities and their collective community structure which are also valuable for discriminative learning. A challenging aspect of learning from the relational data in many domains, is that the generative process of relational links appears noisy and is not well described by a stochastic model.\u0000 In this paper, we present a principled approach for learning discriminative features from heterogeneous sources of dyadic and relational data. We propose an information-theoretic framework called Latent Feature Encoding (LFE) which projects the entities and the links to a latent feature space in the analogy of -encoding. Projection is formalized as a maximization of the mutual information preserved in the latent features, regularized by the compression rate of encoding. The regularization is emphasized over more probable links to account for the noisiness of the observation. An empirical evaluation of the proposed method using text and social media datasets is presented. Performances in supervised and unsupervised learning tasks are compared with those of conventional latent feature extraction methods.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"44 1","pages":"2201-2204"},"PeriodicalIF":0.0,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88134749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}