基于排名的SQL查询处理

H. Azzam, T. Roelleke, Sirvan Yahyaei
{"title":"基于排名的SQL查询处理","authors":"H. Azzam, T. Roelleke, Sirvan Yahyaei","doi":"10.1145/2063576.2063614","DOIUrl":null,"url":null,"abstract":"A growing number of applications are built on top of search engines and issue complex structured queries. This paper contributes a customisable ranking-based processing of such queries, specifically SQL. Similar to how term-based statistics are exploited by term-based retrieval models, ranking-aware processing of SQL queries exploits tuple-based statistics that are derived from sources or, more precisely, derived from the relations specified in the SQL query. To implement this ranking-based processing, we leverage PSQL, a probabilistic variant of SQL, to facilitate probability estimation and the generalisation of document retrieval models to be used for tuple retrieval. The result is a general-purpose framework that can interpret any SQL query and then assign a probabilistic retrieval model to rank the results of that query. The evaluation on the IMDB and Monster benchmarks proves that the PSQL-based approach is applicable to (semi-)structured and unstructured data and structured queries.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"35 1","pages":"231-236"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranking-based processing of SQL queries\",\"authors\":\"H. Azzam, T. Roelleke, Sirvan Yahyaei\",\"doi\":\"10.1145/2063576.2063614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A growing number of applications are built on top of search engines and issue complex structured queries. This paper contributes a customisable ranking-based processing of such queries, specifically SQL. Similar to how term-based statistics are exploited by term-based retrieval models, ranking-aware processing of SQL queries exploits tuple-based statistics that are derived from sources or, more precisely, derived from the relations specified in the SQL query. To implement this ranking-based processing, we leverage PSQL, a probabilistic variant of SQL, to facilitate probability estimation and the generalisation of document retrieval models to be used for tuple retrieval. The result is a general-purpose framework that can interpret any SQL query and then assign a probabilistic retrieval model to rank the results of that query. The evaluation on the IMDB and Monster benchmarks proves that the PSQL-based approach is applicable to (semi-)structured and unstructured data and structured queries.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"35 1\",\"pages\":\"231-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的应用程序建立在搜索引擎之上,并发出复杂的结构化查询。本文提供了一种可定制的基于排名的此类查询处理,特别是SQL。与基于术语的检索模型利用基于术语的统计信息的方式类似,SQL查询的排序感知处理利用基于元组的统计信息,这些统计信息来自源,或者更准确地说,来自SQL查询中指定的关系。为了实现这种基于排名的处理,我们利用PSQL (SQL的一种概率变体)来促进用于元组检索的文档检索模型的概率估计和泛化。结果是一个通用框架,它可以解释任何SQL查询,然后分配一个概率检索模型来对该查询的结果进行排序。对IMDB和Monster基准测试的评估证明,基于psql的方法适用于(半)结构化和非结构化数据以及结构化查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranking-based processing of SQL queries
A growing number of applications are built on top of search engines and issue complex structured queries. This paper contributes a customisable ranking-based processing of such queries, specifically SQL. Similar to how term-based statistics are exploited by term-based retrieval models, ranking-aware processing of SQL queries exploits tuple-based statistics that are derived from sources or, more precisely, derived from the relations specified in the SQL query. To implement this ranking-based processing, we leverage PSQL, a probabilistic variant of SQL, to facilitate probability estimation and the generalisation of document retrieval models to be used for tuple retrieval. The result is a general-purpose framework that can interpret any SQL query and then assign a probabilistic retrieval model to rank the results of that query. The evaluation on the IMDB and Monster benchmarks proves that the PSQL-based approach is applicable to (semi-)structured and unstructured data and structured queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信