Xiaohui Zhang, Han Jiang, Shuang Wu, Jing Wang, Rui Zhou, Xuexin He, Shufang Qian, Shuilin Zhao, Hong Zhang, Ali Cahid Civelek, Mei Tian
{"title":"Positron Emission Tomography Molecular Imaging for Phenotyping and Management of Lymphoma.","authors":"Xiaohui Zhang, Han Jiang, Shuang Wu, Jing Wang, Rui Zhou, Xuexin He, Shufang Qian, Shuilin Zhao, Hong Zhang, Ali Cahid Civelek, Mei Tian","doi":"10.1007/s43657-021-00042-x","DOIUrl":"https://doi.org/10.1007/s43657-021-00042-x","url":null,"abstract":"<p><p>Positron emission tomography (PET) represents molecular imaging for non-invasive phenotyping of physiological and biochemical processes in various oncological diseases. PET imaging with <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) for glucose metabolism evaluation is the standard imaging modality for the clinical management of lymphoma. One of the <sup>18</sup>F-FDG PET applications is the detection and pre-treatment staging of lymphoma, which is highly sensitive. <sup>18</sup>F-FDG PET is also applied during treatment to evaluate the individual chemo-sensitivity and accordingly guide the response-adapted therapy. At the end of the therapy regiment, a negative PET scan is indicative of a good prognosis in patients with advanced Hodgkin's lymphoma and diffuse large B-cell lymphoma. Thus, adjuvant radiotherapy may be alleviated. Future PET studies using non-<sup>18</sup>F-FDG radiotracers, such as <sup>68</sup>Ga-labeled pentixafor (a cyclic pentapeptide that enables sensitive and high-contrast imaging of C-X-C motif chemokine receptor 4), <sup>68</sup>Ga-labeled fibroblast activation protein inhibitor (FAPI) that reflects the tumor microenvironment, and <sup>89</sup>Zr-labeled atezolizumab that targets the programmed cell death-ligand 1 (PD-L1), may complement <sup>18</sup>F-FDG and offer essential tools to decode lymphoma phenotypes further and identify the mechanisms of lymphoma therapy.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 2","pages":"102-118"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590515/pdf/43657_2021_Article_42.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9582366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Preliminary Study on the Evaluation of Human Sperm Head Morphology with a Domestic Digital Holographic Image System.","authors":"Hong Zhu, Yong Zhu, Can Sun, Feng Jiang","doi":"10.1007/s43657-022-00046-1","DOIUrl":"https://doi.org/10.1007/s43657-022-00046-1","url":null,"abstract":"<p><p>The head of sperm was imaged with domestic digital holographic microscopy (DHM), and then the quantitative three-dimensional size information of normal sperm and teratozoospermic sperm was compared and analyzed. DHM sperm imaging and repeated quantitative evaluation were used to determine the morphology of the sperm head in two patients with teratozoospermia and four volunteers with normal semen parameters. Sixty and 139 sperm of teratozoospermia patients and normal people were photographed by digital hologram, respectively. The differences in head height and width were compared and statistically analyzed. The sperm head height of the teratozoospermia group was 3.06 ± 1.66 μm, which was significantly lower than that of the normal sperm group (4.54 ± 1.60 μm, <i>p</i> < 0.01), but there was no significant difference in the head width between the two groups. Compared with the traditional two-dimensional optical microscope observation method, the DHM system can provide three-dimensional quantitative information for the sperm head and thus may help in the comprehensive clinical evaluation of the sperm head structure.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 2","pages":"130-135"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590537/pdf/43657_2022_Article_46.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9582363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the Dynamic Integration of Auxin, Brassinosteroid and Gibberellin in Early Shade-Induced Hypocotyl Elongation.","authors":"Sha Huang, Chuanwei Yang, Lin Li","doi":"10.1007/s43657-022-00044-3","DOIUrl":"https://doi.org/10.1007/s43657-022-00044-3","url":null,"abstract":"<p><p>For shade-intolerant plants, a reduction in the red/far-red (R:FR) light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome (SAS). Auxin, brassinosteroid, gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation. However, little is understood regarding the coordination of these multiple regulatory pathways. Here, combining time-lapse growth rates and transcriptomic data, we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth, whereas gibberellin mainly contributes to the second rapid growth phase. PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) acts earlier than other PIFs. PIF4 and PIF5 modulate the second rapid growth phase. LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and PIF3-LIKE 1 (PIL1) modulate two rapid growth phases. Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-022-00044-3.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 2","pages":"119-129"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590496/pdf/43657_2022_Article_44.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9597618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diurnal Circadian Lighting Accumulation Model: A Predictor of the Human Circadian Phase Shift Phenotype.","authors":"Dandan Hou, Caixin Lin, Yandan Lin","doi":"10.1007/s43657-021-00039-6","DOIUrl":"10.1007/s43657-021-00039-6","url":null,"abstract":"<p><p>Light is an important external factor that affects human circadian rhythms. This study aimed to explore the effects of different dimensions of diurnal light exposure on the physiological circadian phase shift (CPS) of the human body. A strict light exposure experiment with different timing schemes (8:00-12:00, 13:00-17:00, 18:00-22:00), durations (4 h, 8 h) and effective circadian stimulus levels (circadian stimulus: 0.35, 0.55) was performed in an enclosed laboratory. Fourteen participants, including seven males and seven females, with a mean age of 24.29 ± 2.43 (mean ± standard deviation), participated in this experiment and experienced all six lighting schemes. The results showed that both time factor (<i>F</i> <sub>3,40</sub> = 29.079, <i>p</i> < 0.001, the power of the sample size = 0.98) and circadian stimulus levels (<i>T</i> <sub>20</sub> = - 2.415, <i>p</i> = 0.025, the power of sample size = 0.76) significantly affect the CPS. On this basis, a diurnal circadian lighting accumulation (DCLA)-CPS model was proposed in the form of the Boltzmann function, and was validated by experimental data with high correlation (<i>R</i> <sup>2</sup> = 0.9320, RSS = 0.1184), which provides strong support for rationally arranging the light level at different times of the day.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"50-63"},"PeriodicalIF":3.7,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9145058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CYP2C9*3 Increases the Ibuprofen Response of Hemodynamically Significant Patent Ductus Arteriosus in the Infants with Gestational Age of More Than 30 Weeks.","authors":"Xiang Chen, Yuxi Chen, Tiantian Xiao, Xinran Dong, Yulan Lu, Yanyan Qian, Huijun Wang, Wenhao Zhou","doi":"10.1007/s43657-021-00028-9","DOIUrl":"https://doi.org/10.1007/s43657-021-00028-9","url":null,"abstract":"<p><p>Hemodynamically significant patent ductus arteriosus (hsPDA) is a severe condition in newborns. Ibuprofen is an effective treatment to reduce the severe complications and the need for surgical treatment. Several single-nucleotide polymorphisms (SNPs) were related to the ibuprofen metabolism, treatment effects, and the onset of side effects. The effects of SNPs on hsPDA response after ibuprofen treatment are unknown. Therefore, in this study, we recruited hsPDA patients with standard ibuprofen treatment. Those patients had participated in China Neonatal Genomes Project (CNGP, ClinicalTrials.gov Identifier: NCT03931707) with next-generation sequencing data. We reanalyzed the sequencing data and compared the allele frequencies of known ibuprofen-related SNPs between ibuprofen Responder and Non-responder groups. In total, 185 hsPDA patients were recruited with gestational age (GA) ranging from 24 to 40 weeks. No significant differences were detected in the basic information, period of ibuprofen treatment, rate of conservative treatment, complications, and side effects between ibuprofen Responder group and Non-responder group. Totally, 17 hsPDA carried CYP2C9*3 and one with CYP2C9*2 were detected. In the GA group of more than 30 GA weeks (GA > 30 wks group), we found higher allele frequency of CYP2C9*3 in Responder group than in Non-responder group (16% vs. 0, <i>p</i> = 0.0391). In the GA group of less than 30 GA weeks (GA ≤ 30 wks group), the sum allele frequency of CYP2C9*3 and CYP2C9*2 had no stastical difference between two groups (Responder group vs. Non-responder group, 13% vs. 11%, <i>p</i> = 0.768). Therefore, we came to conclude that genetic tests of CYP2C9*3 site may benefit the prediction of ibuprofen treatment outcome for hsPDA patients with gestational age of more than 30 weeks.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-021-00028-9.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"72-77"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590483/pdf/43657_2021_Article_28.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Understanding of Alzheimer's Disease Progression through Mass Spectrometry-Based Metabolomics.","authors":"Jericha Mill, Lingjun Li","doi":"10.1007/s43657-021-00036-9","DOIUrl":"https://doi.org/10.1007/s43657-021-00036-9","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading cause of dementia in the aging population, but despite extensive research, there is no consensus on the biological cause of AD. While AD research is dominated by protein/peptide-centric research based on the amyloid hypothesis, a theory that designates dysfunction in beta-amyloid production, accumulation, or disposal as the primary cause of AD, many studies focus on metabolomics as a means of understanding the biological processes behind AD progression. In this review, we discuss mass spectrometry (MS)-based AD metabolomics studies, including sample type and preparation, mass spectrometry specifications, and data analysis, as well as biological insights gleaned from these studies, with the hope of informing future AD metabolomic studies.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159642/pdf/43657_2021_Article_36.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9339149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaoxi He, Jun Li, Tian Yue, Wangshan Zheng, Yongbo Guo, Hui Zhang, Li Chen, Chunxia Li, Hongyan Li, Chaoying Cui, Ouzhuluobu, Xuebin Qi, Bing Su
{"title":"Seasonality and Sex-Biased Fluctuation of Birth Weight in Tibetan Populations.","authors":"Yaoxi He, Jun Li, Tian Yue, Wangshan Zheng, Yongbo Guo, Hui Zhang, Li Chen, Chunxia Li, Hongyan Li, Chaoying Cui, Ouzhuluobu, Xuebin Qi, Bing Su","doi":"10.1007/s43657-021-00038-7","DOIUrl":"https://doi.org/10.1007/s43657-021-00038-7","url":null,"abstract":"<p><p>Birth weight (BW) is a key determinant of infant mortality. Previous studies have reported seasonal fluctuation of BW. However, the responsible environmental factors remain disputable. High-altitude environment provides a great opportunity to test the current hypotheses due to its distinctive climate conditions. We collected BW data of ~ 9000 Tibetan singletons born at Lhasa (elevation: 3660 m) from 2014 to 2018. Using regression models, we analyzed BW seasonality of highland Tibetans. Multivariate models with meteorological factors as independent variables were employed to examine responsible environmental factors accounting for seasonal variation. We compared BW, low-BW prevalence and sex ratio between highland and lowland populations, and we observed a significant seasonal pattern of BW in Tibetans, with a peak in winter and a trough in summer. Notably, there is a marked sex-biased pattern of BW seasonality (more striking in males than in females). Sunlight exposure in the 3rd trimester and barometric pressure exposure in the 2nd trimester are significantly correlated with BW, and the latter can be explained by seasonal change of oxygen partial pressure. In particular, due to the male-biased BW seasonality, we found a more serious BW reduction and higher prevalence of low-BW in males, and a skewed sex ratio in highlanders. The infant BW of highland Tibetans has a clear pattern of seasonality. The winter BW is larger than the summer BW, due to the longer sunlight exposure during the late-trimester. Male infants are more sensitive to hypoxia than female infants during the 2nd trimester, leading to more BW reduction and higher mortality.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-021-00038-7.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"64-71"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590487/pdf/43657_2021_Article_38.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9500444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why Do We Care More About Disease than Health?","authors":"Martin Picard","doi":"10.1007/s43657-021-00037-8","DOIUrl":"10.1007/s43657-021-00037-8","url":null,"abstract":"<p><p>Modern Western biomedical research and clinical practice are primarily focused on disease. This disease-centric approach has yielded an impressive amount of knowledge around what goes wrong in illness. However, in comparison, researchers and physicians know little about health. What is health? How do we quantify it? And how do we improve it? We currently do not have good answers to these questions. Our lack of fundamental knowledge about health is partly driven by three main factors: (i) a lack of understanding of the dynamic processes that cause variations in health/disease states over time, (ii) an excessive focus on genes, and (iii) a pervasive psychological bias towards additive solutions. Here I briefly discuss potential reasons why scientists and funders have generally adopted a gene- and disease-centric framework, how medicine has ended up practicing \"diseasecare\" rather than healthcare, and present cursory evidence that points towards an alternative energetic view of health. Understanding the basis of human health with a similar degree of precision that has been deployed towards mapping disease processes could bring us to a point where we can actively support and promote human health across the lifespan, before disease shows up on a scan or in bloodwork.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 3","pages":"145-155"},"PeriodicalIF":3.7,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590501/pdf/43657_2021_Article_37.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9612081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection.","authors":"Lulu Zhang, Wenqiong Su, Shuopeng Liu, Chengjie Huang, Behafarid Ghalandari, Adeleh Divsalar, Xianting Ding","doi":"10.1007/s43657-021-00032-z","DOIUrl":"10.1007/s43657-021-00032-z","url":null,"abstract":"<p><p>MicroRNAs (miRNAs), as the small, non-coding, evolutionary conserved, and post-transcriptional gene regulators of the genome, have been highly associated with various diseases such as cancers, viral infections, and cardiovascular diseases. Several techniques have been established to detect miRNAs, including northern blotting, real-time polymerase chain reaction (RT-PCR), and fluorescent microarray platform. However, it remains a significant challenge to develop sensitive, accurate, rapid, and cost-effective methods to detect miRNAs due to their short size, high similarity, and low abundance. The electrochemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration, portability, mass production, short response time, and minimal sample consumption. This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements. With the development of DNA nanotechnology, nanomaterials and biotechnology, electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"18-32"},"PeriodicalIF":3.7,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590547/pdf/43657_2021_Article_32.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baocai Gao, Xiangnan Li, Shujie Li, Sen Wang, Jiaxue Wu, Jixi Li
{"title":"Pan-cancer analysis identifies RNA helicase DDX1 as a prognostic marker.","authors":"Baocai Gao, Xiangnan Li, Shujie Li, Sen Wang, Jiaxue Wu, Jixi Li","doi":"10.1007/s43657-021-00034-x","DOIUrl":"10.1007/s43657-021-00034-x","url":null,"abstract":"<p><p>The DEAD-box RNA helicase (DDX) family plays a critical role in the growth and development of multiple organisms. <i>DDX1</i> is involved in mRNA/rRNA processing and mature, virus replication and transcription, hormone metabolism, tumorigenesis, and tumor development. However, how DDX1 functions in various cancers remains unclear. Here, we explored the potential oncogenic roles of <i>DDX1</i> across 33 tumors with The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. <i>DDX1</i> is highly expressed in breast cancer (BRCA), cholangiocarcinoma (CHOL), and colon adenocarcinoma (COAD), but it is lowly expressed in renal cancers, including kidney renal clear cell carcinoma (KIRC), kidney chromophobe (KICH), and kidney renal papillary cell carcinoma (KIRP). Low expression of <i>DDX1</i> in KIRC is correlated with a good prognosis of overall survival (OS) and disease-free survival (DFS). Highly expressed <i>DDX1</i> is linked to a poor prognosis of OS for adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), KICH, and liver hepatocellular carcinoma (LIHC). Also, the residue Ser481 of DDX1 had an enhanced phosphorylation level in BRCA and ovarian cancer (OV) but decreased in KIRC. Immune infiltration analysis exhibited that <i>DDX1</i> expression affected CD8<sup>+</sup> T cells, and it was significantly associated with MSI (microsatellite instability), TMB (tumor mutational burden), and ICT (immune checkpoint blockade therapy) in tumors. In addition, the depletion of <i>DDX1</i> dramatically affected the cell viability of human tumor-derived cell lines. <i>DDX1</i> could affect the DNA repair pathway and the RNA transport/DNA replication processes during tumorigenesis by analyzing the CancerSEA database. Thus, our pan-cancer analysis revealed that <i>DDX1</i> had complicated impacts on different cancers and might act as a prognostic marker for cancers such as renal cancer.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-021-00034-x.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 1","pages":"33-49"},"PeriodicalIF":3.7,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590584/pdf/43657_2021_Article_34.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9145063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}