A. Sfera, C. Klein, Johnathan J. Anton, Z. Kozlakidis, Christina V. Andronescu
{"title":"The Role of Lactylation in Mental Illness: Emphasis on Microglia","authors":"A. Sfera, C. Klein, Johnathan J. Anton, Z. Kozlakidis, Christina V. Andronescu","doi":"10.3390/neuroglia4020009","DOIUrl":"https://doi.org/10.3390/neuroglia4020009","url":null,"abstract":"A paradigm shift is currently taking place in the etiopathogenesis of neuropsychiatric disorders as immunometabolism is replacing the earlier neurotransmitter model. According to the new concept, cellular bioenergetics drives information processing in the central nervous system; therefore, neuropathology is conceptualized as a direct consequence of impaired metabolism. Along the same lines, endoplasmic reticulum stress and gut barrier dysfunction are emerging as novel targets in schizophrenia and affective disorders, linking immune responses to cellular distress. Furthermore, microglia, the brain’s innate immune cells, acquire energy through oxidative phosphorylation, while in the resting state, and glycolysis upon activation, contributing to lactate accumulation and reduced brain pH. The same metabolic signature characterizes neuropsychiatric disorders as the central nervous system derives adenosine triphosphate from aerobic glycolysis, upregulating lactate and generating an acidic environment. Although known for over three decades, the link between dysmetabolism and neuropathology was poorly defined until the discovery of brain-resident innate lymphoid cells, including natural killer cells, and lactylation of histone and nonhistone proteins. In this perspective article, we examine three anti-inflammatory microglial systems relevant for neuropsychiatry: lactate, oxytocin, and the aryl hydrocarbon receptor. We also discuss potential interventions for restoring microglial homeostasis.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49411851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anderson Togni, T. Piermartiri, L. F. de Souza, Louise Domeneghi Chiaradia Chiaradia Delatorre, R. Nunes, C. Tasca, C. B. Nedel
{"title":"Q1VA, a Synthetic Chalcone, Induces Apoptosis and Decreases Invasion on Primary Culture of Human Glioblastoma","authors":"Anderson Togni, T. Piermartiri, L. F. de Souza, Louise Domeneghi Chiaradia Chiaradia Delatorre, R. Nunes, C. Tasca, C. B. Nedel","doi":"10.3390/neuroglia4020008","DOIUrl":"https://doi.org/10.3390/neuroglia4020008","url":null,"abstract":"Glioblastoma (GBM) is the most commonly occurring type of primary tumor of the central nervous system (CNS) and is considered the worst type of glioma. Despite the current standard treatment for newly diagnosed GBM, which involves surgery followed by chemotherapy with temozolomide (TMZ) and radiation therapy, the average survival time for patients with GBM is only about 15 months. This is due to GBM’s tendency to recur, its high proliferative rates, its ability to evade apoptosis, and its ability to invade healthy tissue. Therefore, it is crucial to explore new treatment options for GBM. This study investigated the potential anticancer activities of a new series of synthetic chalcones, which are natural compounds found in the biosynthesis of flavonoids in plants. Primary cell culture of glioblastoma (GBM1) from surgical resection was used to evaluate the effects of synthetic chalcones on viability, cell death, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), cell cycle, and invasion. One chalcone, Q1VA (at concentrations of 10, 50, and 100 μM for 24 h) induced cytotoxicity by increasing apoptosis levels and depolarizing the mitochondrial membrane, as evidenced by a TMRE assay. Further analysis using the molecular fluorescent probe H2DCFDA indicated that the increased levels of reactive oxygen species (ROS) might be linked to altered mitochondrial membrane potential and cell death. Furthermore, viable cells were observed to be delayed in the cell cycle, primarily in the M phase, and the invasion process was reduced. The findings of this study indicate that Q1VA is a potential adjuvant therapeutic agent for GBM due to its significant antitumor effects. If its safety and efficacy can be confirmed in animal models, Q1VA may be considered for clinical trials in humans. However, additional research is required to determine the optimal dosage, treatment schedule, and potential side effects of Q1VA.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44482869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence of Pro-Stress and Pro-Inflammatory Signaling in the Central Noradrenergic System: Implications for Mood and Anxiety Disorders","authors":"A. A. Reyes, Daniel J. Chandler","doi":"10.3390/neuroglia4020007","DOIUrl":"https://doi.org/10.3390/neuroglia4020007","url":null,"abstract":"Mood and anxiety disorders are heterogeneous psychiatric diagnoses affecting millions. While the disease etiology is complex, various risk factors have been identified, such as stress. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive processes and behavior. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic–pituitary–adrenal (HPA) axis. In addition to its effects on the HPA axis, stress activates the locus coeruleus (LC), a bilateral brainstem nucleus that projects broadly throughout the central nervous system and releases the catecholamine transmitter norepinephrine (NE). The combined activities of the LC–NE system and HPA axis work synergistically to produce timely adaptive physiological and behavioral responses to stress. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of several neuropsychiatric disease states. Notably, recent studies have also implicated neuroinflammation mediated by microglia as a risk factor in mood and anxiety disorders. Despite their combined association with mood and anxiety disorders, the potential links between stress and inflammation, and possible interactions between their respective signaling cascades, have not been well-explored. This brief review aims to summarize how LC is uniquely positioned to respond to both pro-stress and pro-inflammatory cues, and how their convergence in this site may contribute to the development of mood and anxiety disorders.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45358112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Towner, N. Smith, D. Saunders, M. Lerner, Randy L. Jensen, J. Battiste, Marya Ahmed, J. Wren
{"title":"Targeting Bioinformatics Predicted Biomarkers Associated with Cell Proliferation and Migration for Treating Gliomas: Preclinical Studies in a GL261 Mouse Model","authors":"R. Towner, N. Smith, D. Saunders, M. Lerner, Randy L. Jensen, J. Battiste, Marya Ahmed, J. Wren","doi":"10.3390/neuroglia4010006","DOIUrl":"https://doi.org/10.3390/neuroglia4010006","url":null,"abstract":"We previously reported on the experimental validation of several in silico-predicted glioma biomarkers (e.g., Plexin-B2 (PLXNB2), SLIT3, and Spondin-1 (SPON1)) that were found to be higher in human high-grade gliomas (HGGs). In this study, we validated their therapeutic potential by investigating antibody therapies against these three biomarkers in a preclinical mouse GL261 high-grade glioma model. Efficacies for antibody therapies against these biomarkers were assessed by survival and tumor volumes, biomarker expressions, cell invasion and proliferation, and bioinformatics gene/protein associations. Antibodies against PLXNB2, SLIT3, or SPON1 were effective in significantly reducing tumor volumes and increasing animal survival. With immunohistochemistry (IHC), these biomarkers were highly expressed in human HGGs, as well as in mice tumors. From IHC, CD44v6 was significantly decreased for all three antibody treatments, compared to UT GL261 tumors. Bioinformatics suggested that targeting either PLXNB2 or SPON1 may have a major effect on HGG cell migration and invasion (validated with CD44v6 IHC), whereas targeting SLIT3, in addition to affecting cell invasion, may also affect cell proliferation (not validated with Ki67 IHC). These results indicate that targeting these three biomarkers could add to the therapeutic arsenal against high-grade gliomas and that antibodies against them could be considered for clinical translation.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43168406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen Gilliat, Juao-Guilherme Rosa, Genevieve Benjamin, Kaelin Sbrocco, Wensheng Lin, Marija Cvetanovic
{"title":"Modest Reduction in CAG Repeat Length Rescues Motor Deficits but Not Purkinje Cell Pathology and Gliosis in Spinocerebellar Ataxia Type 1 Mice","authors":"Stephen Gilliat, Juao-Guilherme Rosa, Genevieve Benjamin, Kaelin Sbrocco, Wensheng Lin, Marija Cvetanovic","doi":"10.3390/neuroglia4010005","DOIUrl":"https://doi.org/10.3390/neuroglia4010005","url":null,"abstract":"Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by the early and prominent pathology of the cerebellar Purkinje cells that results in balance and coordination deficits. We previously demonstrated that cerebellar astrocytes contribute to SCA1 pathogenesis in a biphasic, stage of disease-dependent manner. We found that pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astrocytes has a neuroprotective role during early-stage SCA1. Here, we sought to examine whether further inducing NF-κB activation in astrocytes of SCA1 model mice at an early stage of the disease has therapeutic benefits. To perform this task, we created a novel Slc1a3-CreERT/IKKβCA/ATXN1[82Q] triple transgenic mouse model in which TMX injection at 4 weeks of age results in the expression of constitutively active inhibitor of kB kinase beta (IKKβCA), the main activator of NF-κB signaling. As we evaluated SCA1-like phenotypes, we noticed that ATXN1[82Q] mice did not exhibit motor deficits anymore, even at very late stages of the disease. We sequenced the mutant ATXN1 gene and discovered that the CAG repeat number had decreased from 82 to 71. However, despite the loss of motor phenotype, other well-characterized SCA1-changes, including atrophy of Purkinje cell dendrites, hallmarks of cerebellar astrogliosis and microgliosis, and Purkinje cell disease-associated gene expression changes, were still detectable in ATXN1[71Q] mice. We found delayed PC atrophy and calbindin reduction in SCA1 mice expressing IKKβCA in astrocytes implicating beneficial effects of increased NF-κB signaling on Purkinje cell pathology. The change in the motor phenotype of SCA1 mice with CAG reduction prevented us from evaluating the neuroprotective potential of IKKβCA on motor deficits in these mice.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46579687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Neuroglia in the Habenular Connection Hub of the Dorsal Diencephalic Conduction System","authors":"A. Loonen","doi":"10.3390/neuroglia4010004","DOIUrl":"https://doi.org/10.3390/neuroglia4010004","url":null,"abstract":"Astrocytes and microglia play important roles in organizing the structure and function of neuronal networks in the central nervous system (CNS). The dorsal diencephalic connection system (DDCS) is a phylogenetically ancient regulatory system by which the forebrain influences the activity of cholinergic and ascending monoaminergic pathways in the midbrain. The DDCS is probably important in inducing aspects of mental disorders, such as depression and addiction. The habenula is the small but highly complex connecting center of the DDCS in the epithalamus that consists of a medial (MHb) and lateral (LHb) division. MHb and LHb are built differently and connect different brain structures. Studies in animal models and human biomarker research provide good evidence that astroglia and microglia also affect the symptoms of mental disorders (such as depression). The significance of these neuroglia in habenular neurotransmission has not been extensively studied. This review article provides arguments for doing so more thoroughly.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47551404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ONC201 for Glioma Treatment: Adding an Important Weapon to Our Arsenal","authors":"Athina-Maria Aloizou, Dimitra Aloizou","doi":"10.3390/neuroglia4010003","DOIUrl":"https://doi.org/10.3390/neuroglia4010003","url":null,"abstract":"Glioma, specifically gliobastoma, represents the commonest central nervous system malignancy and is notoriously challenging to treat, with only a minimal number of patients surviving beyond a year after diagnosis. The available treatment options include surgical resection, radiotherapy, and chemotherapy, mainly with temozolomide. However, gliomas can be particularly treatment resistant and novel options are currently being researched. One such agent is ONC201, the first member of the imipridone class and a TNF-related apoptosis inducing ligand (TRAIL)-inducing compound, which has shown positive results in the first preliminary clinical reports about its application in glioma patients, while also being safe and well-tolerated. Particular promise has been shown for the H3K27M mutated glioblastomas, with more trials focusing on this patient subset. It is likely that this compound will be added in the treatment algorithms of glioma in the future, although more research is still needed.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47252521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contribution of Central and Peripheral Glial Cells in the Development and Persistence of Itch: Therapeutic Implication of Glial Modulation","authors":"P. Gazerani","doi":"10.3390/neuroglia4010002","DOIUrl":"https://doi.org/10.3390/neuroglia4010002","url":null,"abstract":"Chronic itch (CI) is an unpleasant skin sensation accompanied by an intense scratching desire that lasts 6 weeks or longer. Despite the high prevalence and negative impact on affected individuals and a huge healthcare burden, CI mechanisms are only partially understood, and consequently, treatment of CI remains sub-optimal. The complexity of CI treatment also stems from the comorbid existence of persistent itch with other somatic and psychological disorders. Etiologies of CI are multiple and diverse, although CI is often a result of dermatologically related conditions such as atopic dermatitis and psoriasis. Unfolding the pathophysiology of CI can provide possibilities for better therapy. Itch signaling is complex and neurons and non-neuronal cells play a role. This review focuses on recent findings on the role of glial cells in itch. Central glia (astrocytes and microglia) and peripheral glia (satellite glial cells and Schwann cells) are found to contribute to the development or persistence of itch. Hence, glial modulation has been proposed as a potential option in CI treatment. In experimental models of itch, the blockade of signal transducer and the activator of transcription (STAT) 3-mediated reactive astrogliosis have been shown to suppress chronic itch. Administration of a microglial inhibitor, minocycline, has also been demonstrated to suppress itch-related microglial activation and itch. In sensory ganglia, gap-junction blockers have successfully blocked itch, and hence, gap-junction-mediated coupling, with a potential role of satellite glial cells have been proposed. This review presents examples of glial involvement in itch and opportunities and challenges of glial modulation for targeting itch.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48882730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Potential Therapeutic Roles of Taurine in Autism Spectrum Disorder","authors":"Alberto Rubio-Casillas, E. Redwan, V. Uversky","doi":"10.3390/neuroglia4010001","DOIUrl":"https://doi.org/10.3390/neuroglia4010001","url":null,"abstract":"Contemporary research has found that people with autism spectrum disorder (ASD) exhibit aberrant immunological function, with a shift toward increased cytokine production and unusual cell function. Microglia and astroglia were found to be significantly activated in immuno-cytochemical studies, and cytokine analysis revealed that the macrophage chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and transforming growth factor β-1 (TGFB-1), all generated in the neuroglia, constituted the most predominant cytokines in the brain. Taurine (2-aminoethanesulfonic acid) is a promising therapeutic molecule able to increase the activity of antioxidant enzymes and ATPase, which may be protective against aluminum-induced neurotoxicity. It can also stimulate neurogenesis, synaptogenesis, and reprogramming of proinflammatory M1 macrophage polarization by decreasing mitophagy (mitochondrial autophagy) and raising the expression of the markers of the anti-inflammatory and pro-healing M2 macrophages, such as macrophage mannose receptor (MMR, CD206) and interleukin 10 (IL-10), while lowering the expression of the M1 inflammatory factor genes. Taurine also induces autophagy, which is a mechanism that is impaired in microglia cells and is critically associated with the pathophysiology of ASD. We hypothesize here that taurine could reprogram the metabolism of M1 macrophages that are overstimulated in the nervous system of people suffering from ASD, thereby decreasing the neuroinflammatory process characterized by autophagy impairment (due to excessive microglia activation), neuronal death, and improving cognitive functions. Therefore, we suggest that taurine can serve as an important lead for the development of novel drugs for ASD treatment.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44222145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prabhat R Napit, Abdulrahman Alhamyani, Khaggeswar Bheemanapally, Paul W Sylvester, Karen P Briski
{"title":"Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine.","authors":"Prabhat R Napit, Abdulrahman Alhamyani, Khaggeswar Bheemanapally, Paul W Sylvester, Karen P Briski","doi":"10.3390/neuroglia3040010","DOIUrl":"https://doi.org/10.3390/neuroglia3040010","url":null,"abstract":"<p><p>Astrocyte glycogen is a critical metabolic variable that impacts hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their effects on hypothalamic glycogen are not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)-brain type (GPbb), and GP-muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass.</p>","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":"3 4","pages":"144-157"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850496/pdf/nihms-1853554.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10666985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}