Methane最新文献

筛选
英文 中文
Matrix-Assisted Processes in CH4-Doped Ar Ices Irradiated with an Electron Beam 电子束辐照ch4掺杂Ar冰的基质辅助过程
Methane Pub Date : 2023-10-07 DOI: 10.3390/methane2040025
Mykhailo Bludov, Ivan Khyzhniy, Sergey Uyutnov, Elena Savchenko
{"title":"Matrix-Assisted Processes in CH4-Doped Ar Ices Irradiated with an Electron Beam","authors":"Mykhailo Bludov, Ivan Khyzhniy, Sergey Uyutnov, Elena Savchenko","doi":"10.3390/methane2040025","DOIUrl":"https://doi.org/10.3390/methane2040025","url":null,"abstract":"The relaxation processes induced by exposure of the Ar matrices doped with CH4 (0.1–10%) to an electron beam were studied with a focus on the dynamics of radiolysis products—H atoms, H2 molecules, CH radicals, and energy transfer processes. Three channels of energy transfer to dopant and radiolysis products were discussed, including free charge carriers, free excitons and photons from the “intrinsic source” provided by the emission of the self-trapped excitons. Radiolysis products along with the total yield of desorbing particles were monitored in a correlated manner. Analysis of methane transformation reactions induced by free excitons showed that the CH radical can be considered a marker of the CH3 species. The competition between exciton self-trapping and energy transfer to the dopant and radiolysis products has been demonstrated. A nonlinear concentration behavior of the H atoms in doped Ar matrices has been established. Real-time correlated monitoring of optical emissions (H atom and CH3 radicals), particle ejection, and temperature revealed a nonmonotonic behavior of optical yields with a strong luminescence flash after almost an hour of exposure, which correlated with the explosive pulse of particle ejection and temperature. The connection of this phenomenon with the processes of energy transfer and recombination reactions has been established. It is shown that the delayed explosive ejection of particles is driven by both the recombination of H atoms and CH3 radicals. This occurs after their accumulation to a critical concentration in matrices at a CH4 content C ≥ 1%.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture 探讨甲烷氧化菌促进水稻作物生长的潜力
Methane Pub Date : 2023-09-27 DOI: 10.3390/methane2040024
Jyoti A. Mohite, Kumal Khatri, Kajal Pardhi, Shubha S. Manvi, Rutuja Jadhav, Shilpa Rathod, Monali C. Rahalkar
{"title":"Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture","authors":"Jyoti A. Mohite, Kumal Khatri, Kajal Pardhi, Shubha S. Manvi, Rutuja Jadhav, Shilpa Rathod, Monali C. Rahalkar","doi":"10.3390/methane2040024","DOIUrl":"https://doi.org/10.3390/methane2040024","url":null,"abstract":"Rice fields are one of the important anthropogenic sources of methane emissions. Methanotrophs dwelling near the rice roots and at the oxic–anoxic interface of paddy fields can oxidize a large fraction of the generated methane and are therefore considered to be important. Nitrogen fixation in rice root-associated methanotrophs is well known. Our aim in this study was to explore the potential of methanotrophs as bio-inoculants for rice and the studies were performed in pot experiments in monsoon. Ten indigenously isolated methanotrophs were used belonging to eight diverse genera of Type Ia, Type Ib, and Type II methanotrophs, including the newly described genera and/or species, Methylocucumis oryzae and Methylolobus aquaticus, as well as Ca. Methylobacter oryzae and Ca. Methylobacter coli. Additionally, two consortia (Methylomonas strains and Methylocystis-Methylosinus strains) were used. Nitrogen fixation pathways or nifH genes were detected in all of the used methanotrophs. Plant growth promotion (PGPR) was seen in terms of increased plant height and grain yield. Nine out of twelve (seven single strains and two consortia) showed positive effects on grain yield (6–38%). The highest increase in grain yield was seen after inoculation with Ca. Methylobacter coli (38%) followed by Methylomonas consortium (35%) and Methylocucumis oryzae (31%). Methylomagnum ishizawai inoculated plants showed the highest plant height. Methylocucumis oryzae inoculated plants showed early flowering, grain formation, and grain maturation (~17–18 days earlier). In all the pot experiments, minimal quantities of nitrogen fertilizer were used with no additional organic fertilizer inputs. The present study demonstrated the possibility of developing methanotrophs as bio-inoculants for rice agriculture, which would promote plant growth under low inputs of nitrogenous fertilizers. Although the effect of methanotrophs on methane mitigation is still under investigation, their application to reduce methane emissions from rice fields could be an added advantage.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135585771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Associative Effects of In Vitro Gas Production and Fermentation Profile Caused by Variation in Ruminant Diet Constituents 反刍动物日粮成分变化对体外产气和发酵特性影响的评价
Methane Pub Date : 2023-09-12 DOI: 10.3390/methane2030023
Danielle F. Baffa, Tadeu S. Oliveira, Alberto M. Fernandes, Michelle G. Camilo, Ismael N. Silva, José R. Meirelles Júnior, Elon S. Aniceto
{"title":"Evaluation of Associative Effects of In Vitro Gas Production and Fermentation Profile Caused by Variation in Ruminant Diet Constituents","authors":"Danielle F. Baffa, Tadeu S. Oliveira, Alberto M. Fernandes, Michelle G. Camilo, Ismael N. Silva, José R. Meirelles Júnior, Elon S. Aniceto","doi":"10.3390/methane2030023","DOIUrl":"https://doi.org/10.3390/methane2030023","url":null,"abstract":"This study aimed to investigate the associative effects caused by changes in the proportions of feed ingredients (forage-to-concentrate ratio) and the forage source in ruminant diets on in vitro gas production and fermentation parameters. The study consisted of two assays conducted in a completely randomized design with a 3 × 10 factorial arrangement consisting of three forages (pineapple crop waste silage [PS], corn silage [CS], and Tifton hay [TH]) associated with concentrate feed (C) (binary mixture) in 11 proportions, with triplicates of each combination. For the first assay, the asymptotic volume of gas did not show any difference among (p = 0.059) CS and PS (p = 0.464) and their proportions. We evaluated the associative effect among forages and their proportions and noticed there was an effect on gas production between the combination of forage and concentrate for the CS (p = 0.003) and PS (p = 0.003). In the second assay, volatile fatty acids (VFA) and ammonia nitrogen (p < 0.05) were affected by the forage source and concentrate inclusion. In conclusion, forages with a high content of soluble carbohydrates presented the lowest gas production, as well as higher concentrations of propionic acid and ammonia nitrogen. The associative effect on in vitro gas production was more pronounced in the first 12 h incubation. The different forage sources and the inclusion of concentrate change fermentation parameters.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135879101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant 使用依必根沼气添加剂对全规模沼气装置微生物群及性能的影响
Methane Pub Date : 2023-09-03 DOI: 10.3390/methane2030022
Themistoklis Sfetsas, Manthos Panou, A. Chioti, Nikoleta Prokopidou, Ioanna Dalla
{"title":"The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant","authors":"Themistoklis Sfetsas, Manthos Panou, A. Chioti, Nikoleta Prokopidou, Ioanna Dalla","doi":"10.3390/methane2030022","DOIUrl":"https://doi.org/10.3390/methane2030022","url":null,"abstract":"Biogas production from organic waste is a promising renewable energy source, but achieving optimal production and digester stability can be challenging. This study investigated the impact of the Evogen microbial additive on biogas production and digester status in two biogas plants (BG01 and BG02). Microbial abundance and physicochemical parameters were analyzed to assess the effects. The results show distinct microbial community shifts in Evogen-treated digesters, with increased abundance of methanogenic archaea and hydrolytic bacteria, indicating improved anaerobic digestion. Evogen supplementation positively influenced digester performance, as evidenced by higher alkalinity buffer capacity (FOS/TAC ratios), indicating enhanced acidification and methanogenesis, along with reductions in total solids and volatile solids, demonstrating improved organic matter degradation. Evogen-treated digesters exhibited significantly higher biogas production and improved process stability, as indicated by volatile fatty acids (VFAs) profiling. The dominance of Firmicutes, Synergistetes, Proteolytic Bacteroidetes and Actinobacteria highlighted their roles in substrate degradation and VFA production. The findings contribute to optimizing biogas production systems and understanding complex microbial interactions within anaerobic digesters. The addition of Evogen influenced microbial community composition and dynamics, potentially altering substrate utilization, metabolic interactions and overall community structure.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46472925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modulating Natural Methane Release from Rumen Fermentation through the Use of Ficus glomerata Leaf Tannins in Murrah Buffalo (Bubalus bubalis) 利用榕树叶单宁调节水牛瘤胃发酵过程中天然甲烷的释放
Methane Pub Date : 2023-08-10 DOI: 10.3390/methane2030021
R. Singh, A. Dey, Mala Singh
{"title":"Modulating Natural Methane Release from Rumen Fermentation through the Use of Ficus glomerata Leaf Tannins in Murrah Buffalo (Bubalus bubalis)","authors":"R. Singh, A. Dey, Mala Singh","doi":"10.3390/methane2030021","DOIUrl":"https://doi.org/10.3390/methane2030021","url":null,"abstract":"Enteric fermentation is one of the largest contributors of methane release to the environment from the livestock sector. Plant bioactive compounds can modulate rumen fermentation for reduced methanogenesis and fatty acid biohydrogenation. The present study investigates the effects of tannin extract from Ficus glomerata (FG) leaves on the rumen fermentation, methanogenesis, feed digestibility and fatty acid biohydrogenation of a total mixed ration with the aim of developing a feed supplement for enhanced livestock production and product quality with lower methane emission. The tannin extract (70% aqueous acetone extract) of FG leaves in the total mixed ration (oat hay/concentrate mixture; 1:1) was studied at four graded dose regimens (0.0 (control), 0.25 mL (FG-0.25), 0.50 mL (FG-0.50) and 1.0 mL (FG-1.0) per 60 mL of buffered rumen fluid) in three replicates for each treatment in a radio-frequency-based automatic gas production system (ANKOM-RF) at 39 °C for 24 h following the standard in vitro gas production protocol. The total gas production (mL or mL/g incubated dry matter (DM)) was gradually reduced (p < 0.01) at dose levels of FG-0.50 and FG-1.0; however, it remained intermediary and comparable (p > 0.05) for FG-0.25 with the control and FG-0.50. Compared to the control, the methane concentration (%) in the head space gas, as well as the total methane production (mL or mL/g DM incubated, or mL/g DM digested), were found to be gradually reduced (p < 0.01) with increasing doses (0.25–1.0 mL) of FG extract. The reduced (p < 0.05) feed degradability at higher levels (0.50–1.0 mL) of FG extract supplementation and the comparative (p > 0.05) effects with the control at a lower level of supplementation (FG-0.25) are suggestive of the dose-responsive detrimental effects of tannins on fibrolytic microbes in the rumen. However, the ammonia concentration decreased (p < 0.05) in all of the incubations compared to the control. Among the volatile fatty acids, acetate remained comparable (p > 0.05) with enhanced (p < 0.05) propionate at a lower dose (FG-0.25); however, a dose-dependent reduction was evident at higher dose levels (FG-0.50 and FG-1.0). The production of stearic acid (C18:0), which is a product of the rumen biohydrogenation process, was reduced (p < 0.05), irrespective of the concentration of the FG extract. Compared to the control, the concentration of t-vaccenic acid (C18:1), which is a precursor of conjugated linoleic acid (CLA) in animal products, was increased in all the FG-extract-supplemented groups. It may be concluded that Ficus glomerata leaf tannins can modulate rumen fermentation for reduced methanogenesis and fatty acid biohydrogenation in a total mixed ration. As a higher level of inclusion negatively affects feed digestibility, a lower dose (0.25 mL FG extract per 60 mL fermentation fluid or 4.17 mL FG extract per L of fermentation fluid) is suggested to achieve desirable effects on methane abatement (30%) and an improvement in","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44691596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Biosurfactants Gas Hydrate Promoters 生物表面活性剂天然气水合物促进剂研究进展
Methane Pub Date : 2023-08-08 DOI: 10.3390/methane2030020
C. B. Bavoh, E. Broni-Bediako, S. A. Marfo
{"title":"Review of Biosurfactants Gas Hydrate Promoters","authors":"C. B. Bavoh, E. Broni-Bediako, S. A. Marfo","doi":"10.3390/methane2030020","DOIUrl":"https://doi.org/10.3390/methane2030020","url":null,"abstract":"Biosurfactants are promising additives for gas hydrate technology applications. They are believed to have better eco properties than conventional kinetic hydrate promoters such as sodium dodecyl sulfate (SDS). In this article, the research advances on the use of biosurfactants for gas hydrate formation enhancement have been reviewed and discussed in detail to provide current knowledge on their progress in green chemistry technologies. Specifically, the use of bio promoters in carbon capture, gas storage and transportation are discussed. By far, biosurfactants seem to perform better than conventional hydrate promoters and have the potential to lead to the commercialization of gas hydrate-based technologies in terms of improving hydrate kinetics.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42646401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane Oxidation via Chemical and Biological Methods: Challenges and Solutions 通过化学和生物方法氧化甲烷:挑战和解决方案
Methane Pub Date : 2023-07-19 DOI: 10.3390/methane2030019
Dipayan Samanta, R. Sani
{"title":"Methane Oxidation via Chemical and Biological Methods: Challenges and Solutions","authors":"Dipayan Samanta, R. Sani","doi":"10.3390/methane2030019","DOIUrl":"https://doi.org/10.3390/methane2030019","url":null,"abstract":"Methane, a potent greenhouse gas, has gained significant attention due to its environmental impact and economic potential. Chemical industries have focused on specialized catalytic systems, like zeolites, to convert methane into methanol. However, inherent limitations in selectivity, irreversibility, and pore blockages result in high costs and energy requirements, thus hindering their commercial viability and profitability. In contrast, biological methane conversion using methanotrophs has emerged as a promising alternative, offering higher conversion rates, self-renewability, improved selectivity, and economically feasible upstream processes. Nevertheless, biological methane oxidation encounters challenges including the difficulty in cultivating methanotrophs and their slow growth rates, which hinder large-scale bioprocessing. Another highlighted limitation is the limited mass transfer of methane into liquid in bioreactors. Practical strategies to enhance methane oxidation in biological systems, including optimizing reactor design to improve mass transfer, altering metal concentrations, genetic engineering of methane monooxygenases, enzyme encapsulation, and utilizing microbial consortia are discussed. By addressing the limitations of chemical approaches and highlighting the potential of biological methods, the review concluded that the utilization of genetically engineered methanotrophic biofilms on beads within a biotrickling reactor, along with enhanced aeration rates, will likely enhance methane oxidation and subsequent methane conversion rates.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46367288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerobic Digestion Remediation in Three Full-Scale Biogas Plants through Supplement Additions 三个大型沼气厂的厌氧消化补加修复
Methane Pub Date : 2023-07-18 DOI: 10.3390/methane2030018
E. Economou, Georgia Dimitropoulou, Nikoleta Prokopidou, Ioanna Dalla, Themistoklis Sfetsas
{"title":"Anaerobic Digestion Remediation in Three Full-Scale Biogas Plants through Supplement Additions","authors":"E. Economou, Georgia Dimitropoulou, Nikoleta Prokopidou, Ioanna Dalla, Themistoklis Sfetsas","doi":"10.3390/methane2030018","DOIUrl":"https://doi.org/10.3390/methane2030018","url":null,"abstract":"Additives can improve the efficiency of anaerobic digestion by increasing biogas production, reducing air pollution, and preventing ammonia inhibition. Biological or chemical supplementation can also improve the economic efficiency of anaerobic digestion. However, the effects of specific additives on biogas production can vary, depending on the type of supplement used. This research utilizes the additives on an industrial scale and monitors the optimization of the anaerobic digestion operating parameters after their addition. The various AD additives were examined in a sufficient cycle of operation for three biogas plants located in northern Greece. In this manner, the effectiveness was investigated in multiple initial feeds and unstable operating situations caused by the seasonality of specific feedstocks. The existing operation state in the three biogas plants was recorded before and after adding the supplements. The addition of zeolite contributed to the reduction in the total ammoniacal nitrogen values in BG01 and BG03 plants. 8.4 tn of zeolite were added to the BG01 and BG03 plants over a period of two months. Low levels of trace element concentrations were observed in the BG02 plant; this issue was addressed by adding 5 kg of a trace element mixture every week over a period of 60 days. Introducing additives proved to be a stabilization factor in AD performance and an inhibition mediator.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42680918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane to Methanol Conversion Using Proton-Exchange Membrane Fuel Cells and PdAu/Antimony-Doped Tin Oxide Nanomaterials 利用质子交换膜燃料电池和PdAu/锑掺杂氧化锡纳米材料将甲烷转化为甲醇
Methane Pub Date : 2023-06-25 DOI: 10.3390/methane2030017
Victoria A. Maia, J. Nandenha, Marlon H. Gonçalves, R. D. de Souza, A. O. Neto
{"title":"Methane to Methanol Conversion Using Proton-Exchange Membrane Fuel Cells and PdAu/Antimony-Doped Tin Oxide Nanomaterials","authors":"Victoria A. Maia, J. Nandenha, Marlon H. Gonçalves, R. D. de Souza, A. O. Neto","doi":"10.3390/methane2030017","DOIUrl":"https://doi.org/10.3390/methane2030017","url":null,"abstract":"This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium for enhancing the conversion process. The results demonstrate the potential for utilizing methane as a feedstock for producing sustainable energy sources. The Pd75Au25/ATO electrode exhibited the highest OCP value, and Pd50Au50/ATO had the highest methanol production value at a potential of 0.05 V. Therefore, it can be concluded that an optimal composition of gold and palladium exists to enhance the conversion of methane to methanol. The findings contribute to the development of efficient and sustainable energy sources, highlighting the importance of exploring alternative ways to produce methanol.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45235557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors 添加产甲烷抑制剂的Sahiwal和Gir小牛瘤胃甲烷排放的评估
Methane Pub Date : 2023-05-07 DOI: 10.3390/methane2020016
Rachala Dinesh Reddy, Parul Chaudhary, N. Tyagi, M. Mohini, G. Mondal
{"title":"Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors","authors":"Rachala Dinesh Reddy, Parul Chaudhary, N. Tyagi, M. Mohini, G. Mondal","doi":"10.3390/methane2020016","DOIUrl":"https://doi.org/10.3390/methane2020016","url":null,"abstract":"Methane is one of the main greenhouse gases emitted by ruminants around the world. It is essential to investigate novel approaches to increasing animal production while reducing greenhouse gas emissions from ruminants. This study was conducted to examine the effect of methane inhibitors, such as nitrate, linseed oil, and anthraquinone, on nutritional digestibility, rumen fermentation processes, and methane emission in Sahiwal and Gir cattle calves. Twelve calves (6–12 months old), six of each Sahiwal and Gir breed, were selected and divided into four groups; Sahiwal control (C) and treated (T) calves; Gir control (C) and treated calves (T) of three calves each based on average body weight. Switch over a design was used as for periods 1 and 2. Animals in all groups were fed chopped oat fodder, wheat straw, and a concentrate mixture. Additionally, treated groups were fed a ration with potassium nitrate (1%), linseed oil (0.5%), and anthraquinone (4 ppm). The results revealed that the addition of methane inhibitors had no impact on nutrient intake and apparent digestibility. The levels of propionate, ammonia nitrogen, and total nitrogen were increased significantly (p < 0.05), while butyrate decreased in the treated groups of both breeds. However, there was no change in acetate and pH between the groups. Methane emission (g/d) was lower (p < 0.05) in the treated groups as compared to the control group. This study concludes that supplementation of methane inhibitors in calves feed can be utilized to lower methane emissions without affecting the intake and digestibility of nutrients. Combining diverse dietary mitigation strategies could be an effective way to mitigate methane emissions to reduce global warming while minimizing any negative impacts on ruminants to accomplish sustainable animal production.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45697148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信