Life metabolismPub Date : 2024-07-06DOI: 10.1093/lifemeta/loae029
Zhifu Xie, Yufeng Li, Long Cheng, Yidan Huang, Wanglin Rao, Honglu Shi, Jingya Li
{"title":"Potential therapeutic strategies for MASH: from preclinical to clinical development","authors":"Zhifu Xie, Yufeng Li, Long Cheng, Yidan Huang, Wanglin Rao, Honglu Shi, Jingya Li","doi":"10.1093/lifemeta/loae029","DOIUrl":"https://doi.org/10.1093/lifemeta/loae029","url":null,"abstract":"\u0000 Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. However, given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141671861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life metabolismPub Date : 2024-06-22eCollection Date: 2024-12-01DOI: 10.1093/lifemeta/loae027
Nan Yin, Dan Zhang, Jiqiu Wang
{"title":"The <i>FTO</i> variant conferring enhanced UCP1 expression is linked to human migration out of Africa.","authors":"Nan Yin, Dan Zhang, Jiqiu Wang","doi":"10.1093/lifemeta/loae027","DOIUrl":"10.1093/lifemeta/loae027","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 6","pages":"loae027"},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life metabolismPub Date : 2024-06-18eCollection Date: 2024-12-01DOI: 10.1093/lifemeta/loae026
Fenghua Xu, Shoujie Zhao, Yejing Zhu, Jun Zhu, Lingyang Kong, Huichen Li, Shouzheng Ma, Bo Wang, Yongquan Qu, Zhimin Tian, Junlong Zhao, Lei Liu
{"title":"Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy.","authors":"Fenghua Xu, Shoujie Zhao, Yejing Zhu, Jun Zhu, Lingyang Kong, Huichen Li, Shouzheng Ma, Bo Wang, Yongquan Qu, Zhimin Tian, Junlong Zhao, Lei Liu","doi":"10.1093/lifemeta/loae026","DOIUrl":"10.1093/lifemeta/loae026","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment. Phytic acid (PA), as an endogenous and natural antioxidant in the liver, presents significant anti-inflammatory and lipid metabolism-inhibiting functions to alleviate MASH. In this study, considering the unique phosphate-rich structure of PA, we developed a cerium-PA (CePA) nanocomplex by combining PA with cerium ions possessing phosphodiesterase activity. CePA intervened in the S2448 phosphorylation of mTOR through the occupation effect of phosphate groups, thereby inhibiting the inflammatory response and mTOR-sterol regulatory element-binding protein 1 (SREBP1) regulation axis. The <i>in vivo</i> experiments suggested that CePA alleviated MASH progression and fat accumulation in high-fat diet-fed mice. Mechanistic studies validated that CePA exerts a liver-targeted mTOR repressive function, making it a promising candidate for MASH and other mTOR-related disease treatments.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 6","pages":"loae026"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route","authors":"Chao Zhai, Nan Zhang, Xixia Li, Xue-Ke Tan, Fei Sun, Meng-Qiu Dong","doi":"10.1093/lifemeta/loae025","DOIUrl":"https://doi.org/10.1093/lifemeta/loae025","url":null,"abstract":"\u0000 Vitellogenins (VITs) are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans. VITs are synthesized in the intestine, secreted to the pseudocoelom, matured into yolk proteins, and finally deposited in oocytes as nutrients for progeny developme nt. How VITs are secreted out of the intestine remains unclear. Using immuno-electron microscopy (immuno-EM), we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum (ER), the Golgi, and the lipid bilayer-bounded VIT vesicles (VVs). This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoelom. We also show that pseudocoelomic yolk patches (PYPs) are membrane-less and amorphous. The different VITs/yolk proteins are packed as a mixture into the above structures. The size of VVs can vary with the VIT levels and the age of the worm. On adult day 2 (AD 2), intestinal VVs (~200 nm in diameter) are smaller than gonadal yolk organelles (YOs, ~500 nm in diameter). VVs, PYPs, and YOs share a uniform medium electron density by conventional EM. The morphological profiles documented in this study serve as a reference for future studies of VITs/yolk proteins.","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life metabolismPub Date : 2024-06-13DOI: 10.1093/lifemeta/loae023
H. Demagny, A. Perino, Kristina Schoonjans
{"title":"Protecting liver health with microbial-derived succinylated bile acids","authors":"H. Demagny, A. Perino, Kristina Schoonjans","doi":"10.1093/lifemeta/loae023","DOIUrl":"https://doi.org/10.1093/lifemeta/loae023","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life metabolismPub Date : 2024-06-07DOI: 10.1093/lifemeta/loae024
Peter U Amadi, Da-wei Zhang
{"title":"Cholesin, a new hormone bridges intestinal cholesterol absorption and hepatic synthesis","authors":"Peter U Amadi, Da-wei Zhang","doi":"10.1093/lifemeta/loae024","DOIUrl":"https://doi.org/10.1093/lifemeta/loae024","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life metabolismPub Date : 2024-06-01Epub Date: 2023-12-27DOI: 10.1093/lifemeta/load051
Anna S Monzel, Michael Levin, Martin Picard
{"title":"The energetics of cellular life transitions.","authors":"Anna S Monzel, Michael Levin, Martin Picard","doi":"10.1093/lifemeta/load051","DOIUrl":"10.1093/lifemeta/load051","url":null,"abstract":"<p><p>Major life transitions are always difficult because change costs energy. Recent findings have demonstrated how mitochondrial oxidative phosphorylation (OxPhos) defects increase the energetic cost of living, and that excessive integrated stress response (ISR) signaling may prevent cellular identity transitions during development. In this perspective, we discuss general bioenergetic principles of life transitions and the costly molecular processes involved in reprograming the cellular hardware/software as cells shift identity. The energetic cost of cellular differentiation has not been directly quantified, representing a gap in knowledge. We propose that the ISR is an energetic checkpoint evolved to i) prevent OxPhos-deficient cells from engaging in excessively costly transitions, and ii) allow ISR-positive cells to recruit systemic energetic resources by signaling via the brain.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD.","authors":"Wuxiyar Otkur, Yiran Zhang, Yirong Li, Wenjun Bao, Tingze Feng, Bo Wu, Yaolu Ma, Jing Shi, Li Wang, Shaojun Pei, Wen Wang, Jixia Wang, Yaopeng Zhao, Yanfang Liu, Xiuling Li, Tian Xia, Fangjun Wang, Di Chen, Xinmiao Liang, Hai-Long Piao","doi":"10.1093/lifemeta/loae021","DOIUrl":"10.1093/lifemeta/loae021","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes <i>SAA1/2/3</i> (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3',5'-cyclic inosine monophosphate (3',5'-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of <i>GPR35</i>-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 6","pages":"loae021"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}