Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience最新文献

筛选
英文 中文
Use of Buzz Buttons to Illustrate Taste Perception Principles in a Sensation and Perception Laboratory Exercise. 在感觉和知觉实验室练习中使用 "嗡嗡 "按钮来说明味觉原理。
Brittany M Jeye
{"title":"Use of Buzz Buttons to Illustrate Taste Perception Principles in a Sensation and Perception Laboratory Exercise.","authors":"Brittany M Jeye","doi":"10.59390/BCLX3929","DOIUrl":"10.59390/BCLX3929","url":null,"abstract":"<p><p>The buzz button is an edible flower that induces a tingling, electric sensation in the mouth and alters the perception of different flavors. The buzz button's taste-altering effect is thought to be caused by the bioactive compound spilanthol. The present article details a laboratory exercise that explores taste perception principles using the buzz button in an undergraduate Sensation and Perception course. A detailed step-by-step guide for the laboratory exercise is included along with analyzed student results. Students first sampled various food items that spanned the different taste sensations (i.e., salty, sweet, sour and bitter) and then rated their perceived taste intensity on a scale from one (not intense) to ten (very intense). Next, students consumed a buzz button and resampled each food item as well as re-rated their perceived taste intensities. It was found that students' perceived taste intensities for sour items and sweet items were decreased after consuming the buzz buttons. Additionally, students also completed a post-activity survey in which they indicated that this was an interesting and enjoyable exercise. This highlights the value of this particular hands-on demonstration in teaching about the connection between taste and tactile perception.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing BRAINOER: The Behavioral Research and Interdisciplinary Neuroscience Open Educational Repository. 介绍 BRAINOER:行为研究和跨学科神经科学开放教育资料库。
Amber L Harris Bozer, Nichol A Civitello, Elizabeth Dunn Rawlings, Lesley F Leach
{"title":"Introducing BRAINOER: The Behavioral Research and Interdisciplinary Neuroscience Open Educational Repository.","authors":"Amber L Harris Bozer, Nichol A Civitello, Elizabeth Dunn Rawlings, Lesley F Leach","doi":"10.59390/SYLO7794","DOIUrl":"10.59390/SYLO7794","url":null,"abstract":"<p><p>Foundational textbooks for neuroscience courses can be cost-prohibitive for students and may omit recent advances in the field. Therefore, an Open Educational Resource (OER) repository was curated using existing OER materials for use in behavioral neuroscience and physiology courses. The Behavioral Research and Interdisciplinary Neuroscience Open Educational Repository (BRAINOER) contains 9 modules that include the following foundational topics: (1) The Brain and Nervous System, (2) Neurons, (3) The Endocrine System, (4) Neurotransmitters and Psychopharmacology, (5) Motor Processing, (6) Advanced Brain Functions, (7) Sensation and Perception, (8) Genetics and Evolution, (9) Research, Design, and Methods. Each module contains learning objectives in a checklist format, and modules are divided into basic and advanced content where appropriate. Because the repository is divided into content modules, the materials can be used as a full-curriculum or assigned on a module-by-module basis.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Intercultural Competence into a Neuroscience Curriculum through a Short-Term Study Abroad Program. 通过短期海外学习项目将跨文化能力融入神经科学课程。
Greta Ann Herin, Gwendolyn M Lewis
{"title":"Integrating Intercultural Competence into a Neuroscience Curriculum through a Short-Term Study Abroad Program.","authors":"Greta Ann Herin, Gwendolyn M Lewis","doi":"10.59390/PVEC2816","DOIUrl":"10.59390/PVEC2816","url":null,"abstract":"<p><p>We sought to enrich our neuroscience curriculum by developing a study abroad program that would address curricular goals and requirements at several levels. \"Neuroscience and Technology in Germany\" was designed to include a diversity of participants, integrate intercultural competence in participants, fulfill university core curriculum requirements, build on the Science, Technology, Engineering, and Math (STEM) foundation of our major, and fulfill major electives. We also hoped that it would serve as a synthetic experience allowing students to integrate foundational coursework with novel ideas and real-world research applications. We developed an itinerary that balanced multiple activities to meet those goals. We included scientific visits, STEM-focused museums, and significant cultural and historical sites. Scientific visits covered a range of topics in the field of neuroscience including cellular and pharmacological neuroscience, development, cognition, mental illness, artificial intelligence, and the mind-body problem. Pre-visit academic activities included review lectures on general topics (e.g., visual system), scaffolded literature reading, and discussion of previous literature from our hosts. Post-visit academic activities integrated previous foundational curriculum with new research. Cultural historical activities encouraged comparison between a student's home culture, predominant North American culture, and German culture. The first iteration was successful academically and logistically. In post-program surveys, 87.5% of students felt the program had met the learning objectives <i>(n=</i>16). Students agreed that scientific visits and preparatory lectures were relevant to the learning objectives, together with several cultural and historical visits. Students responded positively to an outing to the mountains and found a concentration camp memorial visit moving. They nearly universally reported that the program led to their personal growth. Students did not find several guided tours of STEM-related sites were relevant to our learning objectives, and opinions were mixed as to the balance of structured vs. unstructured time, balance of scientific vs. historical/cultural activities, and how to schedule free time. Students asked for more scientific background preparation, so we modified the upcoming iteration to include a \"Neuroscience Boot Camp\" prior to departure. We also selected guided tours more carefully and modified scheduling according to student feedback.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Neuroscience Research Opportunities to Increase Diversity Program: Transformative and Successful Research Training Strategies for Undergraduate Students within Hispanic Serving Institutions. 增加多样性计划的神经科学研究机会:为西班牙裔服务机构的本科生提供变革性和成功的研究培训战略。
Carmen S Maldonado-Vlaar, José E García-Arrarás
{"title":"The Neuroscience Research Opportunities to Increase Diversity Program: Transformative and Successful Research Training Strategies for Undergraduate Students within Hispanic Serving Institutions.","authors":"Carmen S Maldonado-Vlaar, José E García-Arrarás","doi":"10.59390/ZGLZ3652","DOIUrl":"10.59390/ZGLZ3652","url":null,"abstract":"<p><p>Over the past 14 years, the Neuroscience Research Opportunities to Increase Diversity (NeuroID) program, funded by the National Institute of Neurological Diseases and Stroke (NINDS), has played a transformative role in training numerous undergraduate Hispanic students within The University of Puerto Rico-Rio Piedras (UPR-RP). This innovative Neuroscience-based research training initiative has successfully guided dozens of Hispanic students toward graduate programs in Neuroscience, significantly contributing to the enhancement of diversity within the academic and scientific fields. The achievements of the NeuroID program can be attributed to three key objectives. Firstly, the establishment of a comprehensive and innovative program has provided Hispanic undergraduate students with invaluable insights into various facets of a research career in neuroscience. Secondly, the program has fostered a robust mentorship network that supports selected students throughout their journey to become neuroscientists. Thirdly, it has strengthened the neuroscience network in Puerto Rico by bridging the gap between undergraduate teaching universities and research laboratories in top-tier institutions across the mainland United States.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
And We'll Have Fun Fun Fun…. And We'll Have Fun Fun....
Elaine R Reynolds
{"title":"And We'll Have Fun Fun Fun….","authors":"Elaine R Reynolds","doi":"10.59390/GZLW1868","DOIUrl":"10.59390/GZLW1868","url":null,"abstract":"","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An In-depth Exploration of the Interplay between fMRI Methods and Theory in Cognitive Neuroscience. 深入探讨认知神经科学中 fMRI 方法与理论之间的相互作用。
Derek J Huffman
{"title":"An In-depth Exploration of the Interplay between fMRI Methods and Theory in Cognitive Neuroscience.","authors":"Derek J Huffman","doi":"10.59390/ZABM1739","DOIUrl":"10.59390/ZABM1739","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) has been a cornerstone of cognitive neuroscience since its invention in the 1990s. The methods that we use for fMRI data analysis allow us to test different theories of the brain, thus different analyses can lead us to different conclusions about how the brain produces cognition. There has been a centuries-long debate about the nature of neural processing, with some theories arguing for functional specialization or localization (e.g., face and scene processing) while other theories suggest that cognition is implemented in distributed representations across many neurons and brain regions. Importantly, these theories have received support via different types of analyses; therefore, having students implement hands-on data analysis to explore the results of different fMRI analyses can allow them to take a firsthand approach to thinking about highly influential theories in cognitive neuroscience. Moreover, these explorations allow students to see that there are not clearcut \"right\" or \"wrong\" answers in cognitive neuroscience, rather we effectively instantiate assumptions within our analytical approaches that can lead us to different conclusions. Here, I provide Python code that uses freely available software and data to teach students how to analyze fMRI data using traditional activation analysis and machine-learning-based multivariate pattern analysis (MVPA). Altogether, these resources help teach students about the paramount importance of methodology in shaping our theories of the brain, and I believe they will be helpful for introductory undergraduate courses, graduate-level courses, and as a first analysis for people working in labs that use fMRI.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sherlock Holmes and the Neurophysiologists: Unraveling the "Mystery" of Active Learning Success. 福尔摩斯与神经生理学家:揭开主动学习成功之 "谜"。
Lauren B French, Madeleine Stauffer, Maria Salazar Requena
{"title":"Sherlock Holmes and the Neurophysiologists: Unraveling the \"Mystery\" of Active Learning Success.","authors":"Lauren B French, Madeleine Stauffer, Maria Salazar Requena","doi":"10.59390/EHEK8915","DOIUrl":"10.59390/EHEK8915","url":null,"abstract":"<p><p>The Sherlock Holmes (SH) Project is a collaborative problem-solving activity in the form of a murder mystery that is a great resource for upper-level undergraduate courses in neurophysiology that emphasize synaptic transmission and neuromuscular communication. This project, originally described by Adler and Schwartz (2006), has become a central focus of the Neurophysiology course at Allegheny College, along with many complementary activities that work to reinforce the neuroscience material and skills such as creative experimental design and analysis. Active Learning research in advanced levels of undergraduate courses is rare in the pedagogy literature, and this paper adds to that body of research. Formal assessment of the course generally and the SH Project specifically support the hypothesis that the active learning pedagogical strategies employed foster a positive and successful learning environment.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Dissection Table Case Studies for Undergraduate Neuroanatomy Written Assignments. 用于本科生神经解剖学书面作业的虚拟解剖台案例研究。
Joshua Wang, Kate Beecher, Fatemeh Chehrehasa
{"title":"Virtual Dissection Table Case Studies for Undergraduate Neuroanatomy Written Assignments.","authors":"Joshua Wang, Kate Beecher, Fatemeh Chehrehasa","doi":"10.59390/JDOG5046","DOIUrl":"10.59390/JDOG5046","url":null,"abstract":"<p><p>Neuroanatomy education benefits from cadaveric specimens, yet challenges with access, cost, and health concerns exist. Virtual Dissection Tables (VDTs) offer digital alternatives to traditional cadaveric learning. This article evaluates the pedagogical value of VDTs in undergraduate neuroanatomy education. While VDTs, primarily Anatomage, offer interactive 3D cadaveric images and customization options, research on their impact on neuroanatomy learning outcomes remain limited. Existing studies suggest comparable knowledge retention between VDTs and cadaveric learning, with varying effects on student satisfaction. Investigations of non-exam-based neuroanatomy assessments, however, are scarce. This study presents a case study using VDTs as the basis for a neuroscience assignment report, exploring its construction, and evaluating its strengths, and weaknesses through a student survey. Implemented in an advanced neuroscience course, the assignment involves analyzing 3D reconstructed MRI scans of neuropathological conditions displayed on the VDT. The task requires students to collate, analyze, and predict symptoms based on the pathology observed, aligning their findings with neuroscience literature. This innovative approach aims to enhance research and academic writing skills while expanding the use of VDTs beyond traditional assessment formats in neuroscience education. We found that the case-study format benefited students' neuroanatomy learning and application ability. Further studies should be conducted, however, to understand the effect of VDT use on learning outcomes in case study contexts.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactive Notebooks Improve Students' Understanding of Developmental Neurobiology, Attitudes Toward Research, and Experimental Design Competency in a Lecture-Based Neuroscience Course. 交互式笔记本提高了学生对发育神经生物学的理解、对研究的态度以及在神经科学讲授式课程中的实验设计能力。
Nayeli G Reyes-Nava, David Esparza, Victor Suarez, Anita Quintana, Jeffrey T Olimpo
{"title":"Interactive Notebooks Improve Students' Understanding of Developmental Neurobiology, Attitudes Toward Research, and Experimental Design Competency in a Lecture-Based Neuroscience Course.","authors":"Nayeli G Reyes-Nava, David Esparza, Victor Suarez, Anita Quintana, Jeffrey T Olimpo","doi":"10.59390/NQCA2038","DOIUrl":"10.59390/NQCA2038","url":null,"abstract":"<p><p>Recent efforts to engage postsecondary science, technology, engineering, and mathematics (STEM) students in the rigors of discovery-driven inquiry have centered on the integration of course-based undergraduate research experiences (CUREs) within the biology curricula. While this method of laboratory education is demonstrated to improve students' content knowledge, motivations, affect, and persistence in STEM, CUREs may present as cost- and/or resource-prohibitive. Likewise, not all lecture courses have a concomitant laboratory requirement. With these caveats in mind, we developed the <i>NeuroNotebook</i> intervention, which provided students enrolled in a standalone Developmental Neurobiology course with an immersive, semester-long \"dry-lab\" experience incorporating many of the same elements as a CURE (e.g., collaboration, use of experimental design skills, troubleshooting, and science communication). Quantitative and qualitative assessment of this intervention revealed positive pre-/post-semester gains in students' content knowledge, attitudes toward the research process, and development of science process skills. Collectively, these data suggest that interventions such as the <i>NeuroNotebook</i> can be an effective alternative to a \"wet-lab\" experience.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memphis NeuroSTART Program: Promoting Student Success and Increasing the Diversity of Applicants to Neuroscience Graduate Programs. 孟菲斯 NeuroSTART 计划:促进学生成功并增加神经科学研究生课程申请者的多样性。
Helen J K Sable, Deranda B Lester
{"title":"Memphis NeuroSTART Program: Promoting Student Success and Increasing the Diversity of Applicants to Neuroscience Graduate Programs.","authors":"Helen J K Sable, Deranda B Lester","doi":"10.59390/YGCW6032","DOIUrl":"10.59390/YGCW6032","url":null,"abstract":"<p><p>With grant support from the Research Experience for Undergraduates (REU) program funded by the National Science Foundation (NSF) and the Awards to Stimulate and Support Undergraduate Research Experiences (ASSURE) program funded by the Department of Defense (DoD) Air Force Office of Scientific Research (AFOSR), we established a program intended to increase the number of underrepresented racial and ethnic minority (URM) and first-generation undergraduate students successfully applying to neuroscience and other STEM-related graduate programs. The Neuroscience Techniques and Research Training (NeuroSTART) Program aimed to increase the number of undergraduate students from the Memphis area involved in behavioral neuroscience research. In this two-semester program, students completed an empirical research project in a neuroscience lab, received individual mentoring from neuroscience faculty, became part of a STEM network, presented at research conferences, and attended specialized professional development seminars. In two cohorts of 15 students, 4 are PhD students in neuroscience-related programs or in medical school (27%), 4 are employed in neuroscience-related research facilities (27%), 3 are employed as clinical assistants (20%), and 1 is employed in the IT field (7%). The remaining three recently graduated and are planning a gap year prior to applying for admission to graduate/medical school. The Memphis NeuroSTART program has provided valuable training to participants, making them competitive applicants for jobs in the health sciences and for admittance into graduate neuroscience programs. By providing this training to first-generation and URM students, the broader impact of this program was an increase in the diversity of the health sciences workforce, particularly those specializing in neuroscience-related research and treatment.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信