Journal of molecular and cellular cardiology plus最新文献

筛选
英文 中文
Positive aspects of negative data 消极数据的积极方面
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100016
David Eisner
{"title":"Positive aspects of negative data","authors":"David Eisner","doi":"10.1016/j.jmccpl.2022.100016","DOIUrl":"10.1016/j.jmccpl.2022.100016","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100016"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000101/pdfft?md5=5d43b7ab8f857fb1a14124a656aafdda&pid=1-s2.0-S2772976122000101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41399702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy via inhibition of the NF-κB signaling pathway 心脏特异性ITCH过表达通过抑制NF-κB信号通路改善脓毒性心肌病
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100018
Yuji Saito, Yoichiro Otaki, Tetsu Watanabe, Shingo Tachibana, Junya Sato, Yuta Kobayashi, Tomonori Aono, Jun Goto, Masahiro Wanezaki, Daisuke Kutsuzawa, Shigehiko Kato, Harutoshi Tamura, Satoshi Nishiyama, Takanori Arimoto, Hiroki Takahashi, Masafumi Watanabe
{"title":"Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy via inhibition of the NF-κB signaling pathway","authors":"Yuji Saito,&nbsp;Yoichiro Otaki,&nbsp;Tetsu Watanabe,&nbsp;Shingo Tachibana,&nbsp;Junya Sato,&nbsp;Yuta Kobayashi,&nbsp;Tomonori Aono,&nbsp;Jun Goto,&nbsp;Masahiro Wanezaki,&nbsp;Daisuke Kutsuzawa,&nbsp;Shigehiko Kato,&nbsp;Harutoshi Tamura,&nbsp;Satoshi Nishiyama,&nbsp;Takanori Arimoto,&nbsp;Hiroki Takahashi,&nbsp;Masafumi Watanabe","doi":"10.1016/j.jmccpl.2022.100018","DOIUrl":"10.1016/j.jmccpl.2022.100018","url":null,"abstract":"<div><h3>Background</h3><p>Septic cardiomyopathy is a common complication of septic shock and organ dysfunction. ITCH is a HECT (homologous to the E6-AP carboxyl-terminus)-type ubiquitin E3 ligase that plays a critical role in inflammatory suppression. Herein, we focused on the interaction between ITCH and key regulators of nuclear factor-κB (NF-κB), such as tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β activated kinase 1 (TAK1), and examined the impact of ITCH on the development of septic cardiomyopathy.</p></div><div><h3>Methods and results</h3><p>In H9C2 cardiomyocytes, ITCH protein expression decreased in response to lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα). The protein interactions of ITCH with TRAF6 and TAK1 were confirmed by immunoprecipitation <em>in vitro</em> and <em>in vivo</em>. Based on overexpression and knockdown studies of ITCH in H9C2 cardiomyocytes, ITCH regulates the phosphorylation of NF-κB and subsequent interleukin 6 (<em>IL-6</em>) expression in response to LPS and TNFα stimulation. LPS was intraperitoneally injected into transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type (WT) mice. Compared with WT mice, phosphorylation of NF-κB and subsequent <em>IL-6</em> expression were inhibited in ITCH-Tg mice. Cardiac systolic dysfunction after LPS administration was ameliorated in ITCH-Tg mice, and the survival rate was higher in ITCH-Tg mice than in WT mice.</p></div><div><h3>Conclusion</h3><p>ITCH interacts with TRAF6 and TAK1 in cardiomyocytes and improves cardiac function and survival rates in septic cardiomyopathy by suppressing the NF-κB pathway.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100018"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000125/pdfft?md5=39a90ca15ede55556beb77790ae75b65&pid=1-s2.0-S2772976122000125-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48792544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
“Reproducibility and reporting of negative results in cardiovascular research” from the perspective of mid-career investigator “心血管研究中阴性结果的可重复性和报告”——从职业中期研究者的角度
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100017
Ippei Shimizu
{"title":"“Reproducibility and reporting of negative results in cardiovascular research” from the perspective of mid-career investigator","authors":"Ippei Shimizu","doi":"10.1016/j.jmccpl.2022.100017","DOIUrl":"10.1016/j.jmccpl.2022.100017","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100017"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000113/pdfft?md5=dfa633d305171b737f383b1dbe7bb7bf&pid=1-s2.0-S2772976122000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42249838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of moderate intensity aerobic exercise on cardiovascular function, cardiorespiratory fitness and estrogen receptor alpha gene in overweight/obese postmenopausal women: A randomized controlled trial 中等强度有氧运动对超重/肥胖绝经后妇女心血管功能、心肺健康和雌激素受体α基因的影响:一项随机对照试验
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100026
Abbas Malandish , Mohammad Rahmati-Yamchi
{"title":"The effect of moderate intensity aerobic exercise on cardiovascular function, cardiorespiratory fitness and estrogen receptor alpha gene in overweight/obese postmenopausal women: A randomized controlled trial","authors":"Abbas Malandish ,&nbsp;Mohammad Rahmati-Yamchi","doi":"10.1016/j.jmccpl.2022.100026","DOIUrl":"10.1016/j.jmccpl.2022.100026","url":null,"abstract":"<div><h3>Objective</h3><p>The purpose of this study was to examine the effect of 12 weeks of moderate intensity aerobic exercise on echocardiographic and cardiorespiratory fitness (CRF) parameters, lymphocyte estrogen receptor alpha (ERα) gene expression and sex hormones (17β-estradiol and progesterone) in overweight/obese postmenopausal women (OPMW).</p></div><div><h3>Methods</h3><p>Twenty-seven sedentary OPMW aged 45 to 65 years old were randomly assigned to exercise (EX, n = 14) and control (C, n = 13) groups. The EX group performed warm up-walking/jogging moderate intensity aerobic exercise program- recovery (60 min/day, 3 days/week at 70 % of maximal heart rate reserve for 12 weeks) while the C group participated in no intervention and maintained their daily physical activity level, sedentary normal lifestyle and dietary habits during 12-week. The lymphocyte ERα gene expression, serum levels of 17β-estradiol and progesterone, and CRF &amp; echocardiographic parameters were measured at baseline and week-12.</p></div><div><h3>Results</h3><p>After 12-week, the increase in ERα gene expression (p = 0.009, estimate of effect size/Eta = 28.2 %), VO<sub>2max</sub> (p = 0.001, Eta = 53.4 %), walking-jogging time to exhaustion (WJTE) (p = 0.001, Eta = 55.1 %), metabolic equivalent of task (METs) (p = 0.001, Eta = 97.9 %), left ventricular ejection fraction (LVEF) (p = 0.001, Eta = 53.6 %), cardiac output (Q) (p = 0.036, Eta = 22.3 %), and cardiac index (p = 0.030, Eta = 22.5 %) were significantly higher in the EX group compared to the C group, whereas body fat (p = 0.023, Eta = 25.7 %), left ventricular end-systolic diameter (LVESD) (p = 0.013, Eta = 28.3 %), and mitral E-wave deceleration time (E-wave D time) (p = 0.007, Eta = 32.1 %) were significantly decreased.</p></div><div><h3>Conclusions</h3><p>The results suggested that moderate intensity aerobic exercise can be improved cardiac function such as LVEF, Q, cardiac index, LVESD, and E-wave D time, CRF, ERα-mRNA gene expression as well as maintained sex hormones among sedentary OPMW during menopause, as these positive cellular and molecular or physiological adaptations may be signs of cardioprotective effects by aerobic exercise.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000204/pdfft?md5=55f7aa4a3d703528361a45a03f9b6741&pid=1-s2.0-S2772976122000204-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54552816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducibility and reporting negative data 重复性和报告阴性数据
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100021
Jolanda van der Velden
{"title":"Reproducibility and reporting negative data","authors":"Jolanda van der Velden","doi":"10.1016/j.jmccpl.2022.100021","DOIUrl":"10.1016/j.jmccpl.2022.100021","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100021"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000150/pdfft?md5=c263e8ad2dfa7f576691fd79af7e43b4&pid=1-s2.0-S2772976122000150-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42229291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomics reveal stretched human pluripotent stem cell-derived cardiomyocytes as an advantageous hypertrophy model 转录组学揭示拉伸的人多能干细胞衍生的心肌细胞是一种有利的肥大模型
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100020
Lotta Pohjolainen, Heikki Ruskoaho, Virpi Talman
{"title":"Transcriptomics reveal stretched human pluripotent stem cell-derived cardiomyocytes as an advantageous hypertrophy model","authors":"Lotta Pohjolainen,&nbsp;Heikki Ruskoaho,&nbsp;Virpi Talman","doi":"10.1016/j.jmccpl.2022.100020","DOIUrl":"https://doi.org/10.1016/j.jmccpl.2022.100020","url":null,"abstract":"<div><p>Left ventricular hypertrophy, characterized by hypertrophy of individual cardiomyocytes, is an adaptive response to an increased cardiac workload that eventually leads to heart failure. Previous studies using neonatal rat ventricular myocytes (NRVMs) and animal models have revealed several genes and signaling pathways associated with hypertrophy and mechanical load. However, these models are not directly applicable to humans. Here, we studied the effect of cyclic mechanical stretch on gene expression of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using RNA sequencing. hiPSC-CMs showed distinct hypertrophic changes in gene expression at the level of individual genes and in biological processes. We also identified several differentially expressed genes that have not been previously associated with cardiomyocyte hypertrophy and thus serve as attractive targets for future studies. When compared to previously published data attained from stretched NRVMs and human embryonic stem cell-derived cardiomyocytes, hiPSC-CMs displayed a smaller number of changes in gene expression, but the differentially expressed genes revealed more pronounced enrichment of hypertrophy-related biological processes and pathways. Overall, these results establish hiPSC-CMs as a valuable <em>in vitro</em> model for studying human cardiomyocyte hypertrophy.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100020"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000149/pdfft?md5=f0b59c3f50b0a71a7732d13d1addd192&pid=1-s2.0-S2772976122000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137342231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starting off strong: Rigor and reproducibility in the early career 强势起步:职业生涯早期的严谨性和可重复性
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100022
Ronald J. Vagnozzi
{"title":"Starting off strong: Rigor and reproducibility in the early career","authors":"Ronald J. Vagnozzi","doi":"10.1016/j.jmccpl.2022.100022","DOIUrl":"10.1016/j.jmccpl.2022.100022","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100022"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000162/pdfft?md5=8e1846d23b05b6cb46fdd4abc65a2654&pid=1-s2.0-S2772976122000162-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46655933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gradient of force generation at rest differentiates cardiomyopathy outcomes with variants of actin located at the same residue 静止时力产生的梯度与位于相同残基的肌动蛋白变体区分心肌病结果
Journal of molecular and cellular cardiology plus Pub Date : 2022-12-01 DOI: 10.1016/j.jmccpl.2022.100023
Michael R. Jones, Chau Tran , Jaskerat Singh , John F. Dawson
{"title":"A gradient of force generation at rest differentiates cardiomyopathy outcomes with variants of actin located at the same residue","authors":"Michael R. Jones,&nbsp;Chau Tran ,&nbsp;Jaskerat Singh ,&nbsp;John F. Dawson","doi":"10.1016/j.jmccpl.2022.100023","DOIUrl":"10.1016/j.jmccpl.2022.100023","url":null,"abstract":"<div><p>The calcium sensitivity hypothesis helps explain the development of different forms of cardiomyopathy: increased sensitivity to calcium in cardiac sarcomeres leads to hypertrophic cardiomyopathy (HCM) and decreased sensitivity results in dilated cardiomyopathy (DCM). This hypothesis has driven the development of next generation drugs targeting sarcomere proteins to correct the amount of force generated as a result of changes in calcium sensitivity (<em>e.g.</em> mavacamten decreases cardiac myosin activity to treat HCM). Characterization of variants of cardiac actin (ACTC) found in patients with HCM or DCM has generally supported the calcium sensitivity hypothesis. Of interest are two different substitution mutations at R312 on ACTC: R312H leads to DCM, while R312C was found in patients with HCM. To determine how changes in the same codon on the same gene lead to different disease phenotypes, we characterized recombinant R312H- and R312C-ACTC variant proteins. Both variants exhibited the same change in calcium sensitivity, suggesting that a factor other than calcium sensitivity is responsible for disease differentiation. We observed a gradient of increased residual myosin activity with R312-ACTC variant proteins under relaxing conditions which may trigger different disease development. Our findings suggest that factors other than calcium sensitivity may contribute to cardiomyopathy development and should be considered when planning treatments.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"2 ","pages":"Article 100023"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000174/pdfft?md5=b049a1ef4f9c14330dca36acfb90cff4&pid=1-s2.0-S2772976122000174-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46871693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
How low can you go – Insight into the level of mutated protein required to cause pathogenic effects in hypertrophic cardiomyopathy 你能降到多低?了解引起肥厚型心肌病致病作用所需的突变蛋白水平
Journal of molecular and cellular cardiology plus Pub Date : 2022-09-01 DOI: 10.1016/j.jmccpl.2022.100009
Katja Gehmlich
{"title":"How low can you go – Insight into the level of mutated protein required to cause pathogenic effects in hypertrophic cardiomyopathy","authors":"Katja Gehmlich","doi":"10.1016/j.jmccpl.2022.100009","DOIUrl":"10.1016/j.jmccpl.2022.100009","url":null,"abstract":"","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"1 ","pages":"Article 100009"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976122000034/pdfft?md5=d0c9ffc67f13365ab17620ced2391b4c&pid=1-s2.0-S2772976122000034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44196077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the DBA/2J mouse as a potential background strain for genetic models of cardiomyopathy DBA/2J小鼠作为心肌病遗传模型潜在背景菌株的评估
Journal of molecular and cellular cardiology plus Pub Date : 2022-09-01 DOI: 10.1016/j.jmccpl.2022.100012
Cora C. Hart, Young il Lee, David W. Hammers , H. Lee Sweeney
{"title":"Evaluation of the DBA/2J mouse as a potential background strain for genetic models of cardiomyopathy","authors":"Cora C. Hart,&nbsp;Young il Lee,&nbsp;David W. Hammers ,&nbsp;H. Lee Sweeney","doi":"10.1016/j.jmccpl.2022.100012","DOIUrl":"10.1016/j.jmccpl.2022.100012","url":null,"abstract":"<div><p>The potential use of the D2.<em>mdx</em> mouse (the <em>mdx</em> mutation on the DBA/2J genetic background) as a preclinical model of the cardiac aspects of Duchenne muscular dystrophy (DMD) has been criticized based on speculation that the DBA/2J genetic background displays an inherent hypertrophic cardiomyopathy (HCM) phenotype. Accordingly, the goal of the current study was to further examine the cardiac status of this mouse strain over a 12-month period to determine if observable signs of HCM develop, including histopathology and pathological enlargement of the myocardium. Previous reports have documented heightened TGFβ signaling in the DBA2/J striated muscles, as compared to the C57 background, which, as expected, is manifested as increased cardiomyocyte size, wall thickness, and heart mass as compared to the C57 background. While normalized heart mass is larger in the DBA/2J mice, compared to age-matched C57/BL10 mice, both strains similarly increase in size from 4 to 12 months of age. We also report that DBA/2J mice contain equivalent amounts of left ventricular collagen as healthy canine and human samples. In a longitudinal echocardiography study, neither sedentary nor exercised DBA/2J mice demonstrated left ventricular wall thickening or cardiac functional deficits. In summary, we find no evidence of HCM, nor any other cardiac pathology, and thus propose that it is an appropriate background strain for genetic modeling of cardiac diseases, including the cardiomyopathy associated with DMD.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"1 ","pages":"Article 100012"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/b4/nihms-1895617.PMC10195103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9868956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信