{"title":"Ectodomain Shedding May Play a Pivotal Role in Disease Severity in COVID-19","authors":"R. Yamaguchi, Y. Yamaguchi","doi":"10.33696/signaling.2.040","DOIUrl":"https://doi.org/10.33696/signaling.2.040","url":null,"abstract":"Ectodomain shedding mediated by a disintegrin and metalloprotease 10/17 (ADAM10/17) modulates the function of immune effector cells and may be involved in the novel coronavirus disease COVID-19. Toll-like receptor 7/8 (TLR7/8) recognizes single-strand RNA from viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) during the innate immune response [1], and TLR7/8 agonist activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate reactive oxygen species (ROS) [2]. ADAM10/7 was found to mediate ectodomain shedding to modulate immune responses [3] and to be activated by ROS [4]. These findings suggest that SARS-CoV-2 contributes to and induces ectodomain shedding, which may be associated with disease severity. In patients with COVID-19, studies found a higher blood concentration of the chemokine fractalkine [5]. Cell membrane-bound angiotensin-converting enzyme 2 (ACE2) has been identified as a binding site and entry receptor for the spike protein of SARS-CoV-2. After the","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78325224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Macrophages in Oral Tissues","authors":"Vitor C. Neves, Jing Zhao, A. Caetano, P. Sharpe","doi":"10.33696/signaling.2.042","DOIUrl":"https://doi.org/10.33696/signaling.2.042","url":null,"abstract":"The balance between cell removal following tissue damage and new cell formation to facilitate repair has long been linked to the behaviour of inflammatory macrophages and their interactions with tissue-resident non-immune cells. The main aim of the inflammatory response is to modulate the tissue environment by removing unwanted cells and recruiting cells and soluble factors from the bloodstream to help protect the damaged tissue against infective foreign bodies. Such processes are essential for remodeling, repair, and forming new tissue in the area of damage. Macrophages play an important role in tissue repair and regeneration by exerting their effects in various tissue repair and regeneration effects by exerting their effects in various tissue repair and regeneration effects by exerting their marks in multiple ways during these processes. Current research shows that depletion of macrophages is detrimental for skin and muscle repair and whole limb regeneration [1-3]. Moreover, resident macrophages are described as regulators of inflammation levels by ‘cloaking’ microinjuries and regulating neutrophil recruitment [4-5].","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77699559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer-associated Molecular Abnormalities in Human NK cells","authors":"G. Zakiryanova, M. Shurin","doi":"10.33696/signaling.2.039","DOIUrl":"https://doi.org/10.33696/signaling.2.039","url":null,"abstract":"Natural Killer (NK) cells play a key role in the immune responses against infection and cancer as powerful cytotoxic effector cells and regulators of both innate and adaptive immunity [1,2]. Therefore, defects in NK cell functions are important mechanisms for immune evasion of malignant cells [3]. For instance, the ability of tumor cells and tumor-associated stromal/infiltrating cells to inhibit NK cell activity, which results in preventing NK cells from recognizing and killing tumor cells, has been reported for melanoma, neuroblastoma, gastrointestinal sarcoma, hepatocellular cancer (HCC), pancreatic cancer, colorectal carcinoma and other types of cancer [4-9]. A potential loss of NK cell numbers and function at preneoplastic stages of tumorigenesis as a possible mechanism for cancer induction and progression has been also recently proposed [5,10]. However, molecular mechanisms regulating NK cell dysfunction and exhaustion in cancer are largely unclear.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91012926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Possible Therapeutic Use of Natural Compounds Against COVID-19","authors":"Nabab Khan, Xuesong Chen, J. Geiger","doi":"10.33696/SIGNALING.2.036","DOIUrl":"https://doi.org/10.33696/SIGNALING.2.036","url":null,"abstract":"The outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to coronavirus disease-19 (COVID-19); a pandemic disease that has resulted in devastating social, economic, morbidity and mortality burdens. SARS-CoV-2 infects cells following receptor-mediated endocytosis and priming by cellular proteases. Following uptake, SARS-CoV-2 replicates in autophagosome-like structures in the cytosol following its escape from endolysosomes. Accordingly, the greater endolysosome pathway including autophagosomes and the mTOR sensor may be targets for therapeutic interventions against SARS-CoV-2 infection and COVID-19 pathogenesis. Naturally existing compounds (phytochemicals) through their actions on endolysosomes and mTOR signaling pathways might provide therapeutic relief against COVID-19. Here, we discuss evidence that some natural compounds through actions on the greater endolysosome system can inhibit SARS-CoV-2 infectivity and thereby might be repurposed for use against COVID-19.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"13 1","pages":"63 - 79"},"PeriodicalIF":0.0,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89330314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S1P Generation by Sphingosine Kinase-2 in Recruited Macrophages Resolves Lung Inflammation by Blocking STING Signaling in Alveolar Macrophages","authors":"J. Joshi, Bhagwati Joshi, Ian Rochford, D. Mehta","doi":"10.33696/SIGNALING.2.034","DOIUrl":"https://doi.org/10.33696/SIGNALING.2.034","url":null,"abstract":"Acute respiratory distress syndrome (ARDS) is the major cause of mortality among hospitalized acute lung injury (ALI) patients. Lung macrophages play an important role in maintaining the tissue-fluid homeostasis following injury. We recently showed that circulating monocytes recruited into the alveolar space suppressed the stimulator of type 1 interferon genes (STING) signaling in alveolar macrophages through sphingosine-1-phosphate (S1P). We used CD11b-DTR mice to deplete CD11b+ monocytes following LPS or Pseudomonas aeruginosa infection. Depletion of CD11b+ monocytes leads to the persistent inflammatory injury, infiltration of neutrophils, activation of STING signaling and mortality following lung infection. We demonstrated that adoptively transferred SPHK2-CD11b+ monocytes into CD11b-DTR mice after pathogenic infection rescue lung inflammatory injury.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"64 1","pages":"47 - 51"},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91077951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Wright, Chuan Li, Chang-xue Zheng, Haley O. Tucker
{"title":"FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion","authors":"W. Wright, Chuan Li, Chang-xue Zheng, Haley O. Tucker","doi":"10.33696/SIGNALING.2.032","DOIUrl":"https://doi.org/10.33696/SIGNALING.2.032","url":null,"abstract":"Forkhead transcription factors (TFs) often dimerize outside their extensive family, whereas bHLH transcription factors typically dimerize with E12/E47. Based on structural similarities, we predicted that a member of the former, Forkhead Box P1 (FOXP1), might heterodimerize with a member of the latter, MYOD1 (MyoD). Data shown here support this hypothesis and further demonstrate the specificity of this forkhead/myogenic interaction among other myogenic regulatory factors. We found that FOXP1-MyoD heterodimerization compromises the ability of MyoD to bind to E-boxes and to transactivate E box- containing promoters. We observed that FOXP1 is required for the full ability of MyoD to convert fibroblasts into myotubules. We provide a model in which FOXP1 displaces ID and E12/E47 to repress MyoD during the proliferative phase of myoblast differentiation. These data identify FOXP1 as a hitherto unsuspected transcriptional repressor of MyoD. We suggest that isolation of paired E-box and forkhead sites within 1 turn helical spacings provides potential for cooperative interactions among heretofore distinct classes of transcription factors.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"1 1","pages":"9 - 26"},"PeriodicalIF":0.0,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82456910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Woodring E Wright, Chuan Li, Chang-Xue Zheng, Haley O Tucker
{"title":"FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion.","authors":"Woodring E Wright, Chuan Li, Chang-Xue Zheng, Haley O Tucker","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Forkhead transcription factors (TFs) often dimerize outside their extensive family, whereas bHLH transcription factors typically dimerize with E12/E47. Based on structural similarities, we predicted that a member of the former, Forkhead Box P1 (FOXP1), might heterodimerize with a member of the latter, MYOD1 (MyoD). Data shown here support this hypothesis and further demonstrate the specificity of this forkhead/myogenic interaction among other myogenic regulatory factors. We found that FOXP1-MyoD heterodimerization compromises the ability of MyoD to bind to E-boxes and to transactivate E box- containing promoters. We observed that FOXP1 is required for the full ability of MyoD to convert fibroblasts into myotubules. We provide a model in which FOXP1 displaces ID and E12/E47 to repress MyoD during the proliferative phase of myoblast differentiation. These data identify FOXP1 as a hitherto unsuspected transcriptional repressor of MyoD. We suggest that isolation of paired E-box and forkhead sites within 1 turn helical spacings provides potential for cooperative interactions among heretofore distinct classes of transcription factors.</p>","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"2 1","pages":"9-26"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25343838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasminogen Activator Inhibitor-1 and Oncogenesis in the Liver Disease.","authors":"Da-Eun Nam, Hae Chang Seong, Young S Hahn","doi":"10.33696/signaling.2.054","DOIUrl":"https://doi.org/10.33696/signaling.2.054","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a significant cause of cancer mortality worldwide. Chronic hepatic inflammation and fibrosis play a critical role in the development of HCC. Liver fibrosis develops as a result of response to injury such that a persistent and excessive wound healing response induces extracellular matrix (ECM) deposition leading to HCC. PAI-1 is a fibrinolysis inhibitor involved in regulating protein degradation and homeostasis while assisting wound healing. PAI-1 presents increased levels in various diseases such as fibrosis, cancer, obesity and metabolic syndrome. Moreover, PAI-1 has been extensively studied for developing potential therapies against fibrosis. In the present review, we summarize how PAI-1 affects oncogenesis during liver disease progression based on the recently published literatures. Although there are controversies regarding the role of PAI-1 and approaches to treatment, this review suggests that proper manipulation of PAI-1 activity could provide a novel therapeutic option on the development of chronic liver disease via modulation of cancer stem-like cells (CSCs) differentiation.</p>","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"2 3","pages":"221-227"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39535965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chad M Warren, Monika Halas, Han-Zhong Feng, Beata M Wolska, Jian-Ping Jin, R John Solaro
{"title":"NH<sub>2</sub>-Terminal Cleavage of Cardiac Troponin I Signals Adaptive Response to Cardiac Stressors.","authors":"Chad M Warren, Monika Halas, Han-Zhong Feng, Beata M Wolska, Jian-Ping Jin, R John Solaro","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cardiac sarcomeres express a variant of troponin I (cTnI) that contains a unique N-terminal extension of ~30 amino acids with regulatory phosphorylation sites. The extension is important in the control of myofilament response to Ca<sup>2+</sup>, which contributes to the neuro-humoral regulation of the dynamics of cardiac contraction and relaxation. Hearts of various species including humans express a stress-induced truncated variant of cardiac troponin I (cTnI-ND) missing the first ~30 amino acids and functionally mimicking the phosphorylated state of cTnI. Studies have demonstrated that upregulation of cTnI-ND potentially represents a homeostatic mechanism as well as an adaptive response in pathophysiology including ischemia/reperfusion injury, beta adrenergic maladaptive activation, and aging. We present evidence showing that cTnI-ND can modify the trigger for hypertrophic cardiomyopathy (HCM) by reducing the Ca<sup>2+</sup> sensitivity of myofilaments from hearts with an E180G mutation in α-tropomyosin. Induction of this truncation may represent a therapeutic approach to modifying Ca<sup>2+</sup>-responses in hearts with hypercontractility or heat failure with preserved ejection fraction.</p>","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"2 3","pages":"162-171"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/b5/nihms-1735512.PMC8444995.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39453025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shreya Prasad Goyal, Morana Vojnic, Jung-In Yang, Jyothi Jose, Elliot Newman, M Wasif Saif
{"title":"Neoadjuvant Therapy (NAT) in Localized Pancreatic Cancer: Should We Do It and What Should We Do?","authors":"Shreya Prasad Goyal, Morana Vojnic, Jung-In Yang, Jyothi Jose, Elliot Newman, M Wasif Saif","doi":"10.33696/signaling.2.037","DOIUrl":"https://doi.org/10.33696/signaling.2.037","url":null,"abstract":"In 2019, approximately 56,770 new cases of pancreatic cancer were diagnosed in the United States, resulting in an estimated 45,750 deaths. Pancreatic cancer is one of the leading causes of cancer-related death, with a five-year survival rate of 9% [1]. Based on the eighth edition of the American Joint Committee on Cancer (AJCC) staging system for pancreatic adenocarcinoma, multi-center analyses have validated that poorer prognosis is associated with node-positive disease (N1 and N2) [2,3]. Specifically, five-year survival rates were significantly lower with the increasing N stage: 35.6% in N0, 20.8% in N1, and 10.9% in N2, reflecting relatively better survival in organ confined pancreatic cancer, compared to node positive disease [3]. To date, the most effective treatment for pancreatic cancer is known to be surgical resection, partly due to the intrinsic resistance of pancreatic cancer cells to systemic therapy or radiotherapy. Unfortunately, only 15–20% of patients are candidates for surgical resection as most patients are diagnosed with locally advanced or metastatic disease, due to a lack of effective pancreatic cancer screening methods. However, the prognosis of pancreatic cancer is still grim even in those with resectable disease.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"2 1","pages":"80-84"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}