Immunotherapy advancesPub Date : 2023-01-06eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad001
Natalie M Edner, Elisavet Ntavli, Lina Petersone, Chun Jing Wang, Astrid Fabri, Alexandros Kogimtzis, Vitalijs Ovcinnikovs, Ellen M Ross, Frank Heuts, Yassin Elfaki, Luke P Houghton, Toby Talbot, Amna Sheri, Alexandra Pender, David Chao, Lucy S K Walker
{"title":"Stratification of PD-1 blockade response in melanoma using pre- and post-treatment immunophenotyping of peripheral blood.","authors":"Natalie M Edner, Elisavet Ntavli, Lina Petersone, Chun Jing Wang, Astrid Fabri, Alexandros Kogimtzis, Vitalijs Ovcinnikovs, Ellen M Ross, Frank Heuts, Yassin Elfaki, Luke P Houghton, Toby Talbot, Amna Sheri, Alexandra Pender, David Chao, Lucy S K Walker","doi":"10.1093/immadv/ltad001","DOIUrl":"10.1093/immadv/ltad001","url":null,"abstract":"<p><p>Efficacy of checkpoint inhibitor therapies in cancer varies greatly, with some patients showing complete responses while others do not respond and experience progressive disease. We aimed to identify correlates of response and progression following PD-1-directed therapy by immunophenotyping peripheral blood samples from 20 patients with advanced malignant melanoma before and after treatment with the PD-1 blocking antibody pembrolizumab. Our data reveal that individuals responding to PD-1 blockade were characterised by increased CD8 T cell proliferation following treatment, while progression was associated with an increase in CTLA-4-expressing Treg. Remarkably, unsupervised clustering analysis of pre-treatment T cell subsets revealed differences in individuals that went on to respond to PD-1 blockade compared to individuals that did not. These differences mapped to expression of the proliferation marker Ki67 and the costimulatory receptor CD28 as well as the inhibitory molecules 2B4 and KLRG1. While these results require validation in larger patient cohorts, they suggest that flow cytometric analysis of a relatively small number of T cell markers in peripheral blood could potentially allow stratification of PD-1 blockade treatment response prior to therapy initiation.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad001"},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10773190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peripheral blood persistence and expansion of transferred non-genetically modified Natural Killer cells might not be necessary for clinical activity.","authors":"Lucia Silla","doi":"10.1093/immadv/ltac024","DOIUrl":"https://doi.org/10.1093/immadv/ltac024","url":null,"abstract":"<p><p>Natural killer (NK) cells are innate lymphocytes that react without previous exposition to virus infected or malignant cells and stimulate adaptive immune response to build a long-lasting immunity against it. To that end, tissue resident NK cells are predominantly regulatory as opposed to cytotoxic. In the hematopoietic stem cell transplant (HSCT) setting, which curative potential relies on the graft versus leukemia effect, NK cells are known to play a significant role. This knowledge has paved the way to the active investigation on its anti-tumor effect outside the stem cell transplant scenario. Based on the relevant literature on the adoptive transfer of non-genetically modified NK cells for the treatment of relapsed/refractory acute leukemia and on our own experience, we discuss the role of donor cell peripheral blood persistence and expansion and its lack of correlation with anti-leukemia activity.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltac024"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meiyin Lin, Sebastian Chakrit Bhakdi, Damien Tan, Joycelyn Jie Xin Lee, David Wai Meng Tai, Andrea Pavesi, Lu-En Wai, Tina Wang, Antonio Bertoletti, Anthony Tanoto Tan
{"title":"Lytic efficiency of immunosuppressive drug-resistant armoured T cells against circulating HBV-related HCC in whole blood.","authors":"Meiyin Lin, Sebastian Chakrit Bhakdi, Damien Tan, Joycelyn Jie Xin Lee, David Wai Meng Tai, Andrea Pavesi, Lu-En Wai, Tina Wang, Antonio Bertoletti, Anthony Tanoto Tan","doi":"10.1093/immadv/ltad015","DOIUrl":"https://doi.org/10.1093/immadv/ltad015","url":null,"abstract":"<p><p>Recurrence of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) after liver transplant (LT) is mediated by circulating tumour cells (CTCs) and exacerbated by the immunosuppressants required to prevent graft rejection. To circumvent the effects of immunosuppressants, we developed immunosuppressive drug-resistant armoured HBV-specific T-cell receptor-redirected T cells (IDRA HBV-TCR). However, their ability to eliminate HBV-HCC circulating in the whole blood has never been tested, and whether their lytic efficacy is compatible with the number of adoptively transferred T cells <i>in vivo</i> has never been measured. Hence, we developed a microscopy-based assay to quantify CTCs in whole blood. The assay was then used to quantify the efficacy of IDRA HBV-TCRs to lyse free-floating HBV-HCC cells in the presence of Tacrolimus and Mycophenolate Mofetil (MMF). We demonstrated that a panel of antibodies (AFP, GPC3, Vimentin, pan-Cytokeratin, and CD45) specific for HCC tumour antigens and immune cells can effectively differentiate HCC-CTCs in whole blood. Through dose-titration experiments, we observed that in the presence of immunosuppressive drugs, a minimum of 20 000 IDRA HBV-TCR T cells/ml of whole blood is necessary to lyse ~63.5% of free-floating HBV-HCC cells within 16 hours. In conclusion, IDRA HBV-TCR T cells can lyse free-floating HBV-HCC cells in whole blood in the presence of Tacrolimus and MMF. The quantity of IDRA-HBV TCR T cells required can be achieved by the adoptive transfer of 5 × 10<sup>6</sup> IDRA-HBV TCR-T cells/kg, supporting the utilisation of IDRA HBV-TCR T cells to eliminate CTCs as prophylaxis against recurrence after LT.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad015"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/10/ltad015.PMC10460197.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10109074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Treg-based immunotherapy for antigen-specific immune suppression and stable tolerance induction: a perspective.","authors":"Shimon Sakaguchi, Ryoji Kawakami, Norihisa Mikami","doi":"10.1093/immadv/ltad007","DOIUrl":"https://doi.org/10.1093/immadv/ltad007","url":null,"abstract":"<p><p>FoxP3-expressing regulatory T cells (Tregs), whether naturally generated in the immune system or unnaturally induced from conventional T cells (Tconvs) in the laboratory, have much therapeutic value in treating immunological diseases and establishing transplantation tolerance. Natural Tregs (nTregs) can be selectively expanded <i>in vivo</i> by administration of low-dose IL-2 or IL-2 muteins for immune suppression. For adoptive Treg cell therapy, nTregs can be expanded <i>in vitro</i> by strong antigenic stimulation in the presence of IL-2. Synthetic receptors such as CAR can be expressed in nTregs to equip them with a particular target specificity for suppression. In addition, antigen-specific Tconvs can be converted <i>in vitro</i> to functionally stable Treg-like cells by a combination of antigenic stimulation, FoxP3 induction, and establishment of the Treg-type epigenome. This review discusses current and prospective strategies for Treg-based immune suppression and the issues to be resolved for achieving stable antigen-specific immune suppression and tolerance induction in the clinic by targeting Tregs.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad007"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/65/ltad007.PMC10309084.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10123148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TIGIT-based immunotherapeutics in lung cancer.","authors":"Akshay J Patel, Gary W Middleton","doi":"10.1093/immadv/ltad009","DOIUrl":"https://doi.org/10.1093/immadv/ltad009","url":null,"abstract":"<p><p>In this review, we explore the biology of the TIGIT checkpoint and its potential as a therapeutic target in lung cancer. We briefly review a highly selected set of clinical trials that have reported or are currently recruiting in non-small cell and small cell lung cancer, a disease transformed by the advent of PD-1/PD-L1 checkpoint blockade immunotherapy. We explore the murine data underlying TIGIT blockade and further explore the reliance of effective anti-TIGIT therapy on DNAM-1(CD226)-positive activated effector CD8+ T cells. The synergism with anti-PD-1 therapy is also explored. Future directions in the realm of overcoming resistance to checkpoint blockade and extending the repertoire of other checkpoints are also briefly explored.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad009"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9648653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Characterization of sabatolimab, a novel immunotherapy with immuno-myeloid activity directed against TIM-3 receptor.","authors":"","doi":"10.1093/immadv/ltad002","DOIUrl":"https://doi.org/10.1093/immadv/ltad002","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/immadv/ltac019.].</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad002"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10826769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Fellermeyer, Consuelo Anzilotti, Christopher Paluch, Richard J Cornall, Simon J Davis, Uzi Gileadi
{"title":"Combination CD200R/PD-1 blockade in a humanised mouse model.","authors":"Martin Fellermeyer, Consuelo Anzilotti, Christopher Paluch, Richard J Cornall, Simon J Davis, Uzi Gileadi","doi":"10.1093/immadv/ltad006","DOIUrl":"https://doi.org/10.1093/immadv/ltad006","url":null,"abstract":"<p><p>There is an increasing number of immune-checkpoint inhibitors being developed and approved for cancer immunotherapy. Most of the new therapies aim to reactivate tumour-infiltrating T cells, which are responsible for tumour killing. However, in many tumours, the most abundant infiltrating immune cells are macrophages and myeloid cells, which can be tumour-promoting as well as tumouricidal. CD200R was initially identified as a myeloid-restricted, inhibitory immune receptor, but was subsequently also found to be expressed within the lymphoid lineage. Using a mouse model humanised for CD200R and PD-1, we investigated the potential of a combination therapy comprising nivolumab, a clinically approved PD-1 blocking antibody, and OX108, a CD200R antagonist. We produced nivolumab as a murine IgG1 antibody and validated its binding activity <i>in vitro</i> as well as <i>ex vivo</i>. We then tested the combination therapy in the immunogenic colorectal cancer model MC38 as well as the PD-1 blockade-resistant lung cancer model LLC1, which is characterised by a large number of infiltrating myeloid cells, making it an attractive target for CD200R blockade. No significant improvement of overall survival was found in either model, compared to nivolumab mIgG1 monotherapy. There was a trend for more complete responses in the MC38 model, but investigation of the infiltrating immune cells failed to account for this. Importantly, MC38 cells expressed low levels of CD200, whereas LLC1 cells were CD200-negative. Further investigation of CD200R-blocking antibodies in tumours expressing high levels of CD200 could be warranted.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad006"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9386243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Advancement of antigen-specific immunotherapy: knowledge transfer between allergy and autoimmunity.","authors":"","doi":"10.1093/immadv/ltad004","DOIUrl":"https://doi.org/10.1093/immadv/ltad004","url":null,"abstract":"[This corrects the article DOI: 10.1093/immadv/ltab009.].","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad004"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/15/ltad004.PMC10374272.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10255637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A historical perspective on HLA.","authors":"Walter Bodmer","doi":"10.1093/immadv/ltad014","DOIUrl":"https://doi.org/10.1093/immadv/ltad014","url":null,"abstract":"<p><p>The discovery of the history of the HLA system is reviewed from the earliest attempts at cancer transfers between mice, through the discovery of the mouse H-2 system on mouse red blood cells, the discovery of HLA class II and II antigens by use of sera from multiparous women, to the resolution of the HLA and H-2 functions explained by the attachment of intra cellular peptides to the HLA antigen grooves on the cell surface. The study of the associations between HLA types and diseases forms the basis for the subsequent extensive study of the genetics of human complex disease and phenotypes by GWAS (Genome Wide Association Studies).</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltad014"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A K Daramola, O A Akinrinmade, E A Fajemisin, K Naran, N Mthembu, S Hadebe, F Brombacher, A M Huysamen, O E Fadeyi, R Hunter, S Barth
{"title":"A recombinant Der p 1-specific allergen-toxin demonstrates superior killing of allergen-reactive IgG<sup>+</sup> hybridomas in comparison to its recombinant allergen-drug conjugate.","authors":"A K Daramola, O A Akinrinmade, E A Fajemisin, K Naran, N Mthembu, S Hadebe, F Brombacher, A M Huysamen, O E Fadeyi, R Hunter, S Barth","doi":"10.1093/immadv/ltac023","DOIUrl":"https://doi.org/10.1093/immadv/ltac023","url":null,"abstract":"<p><strong>Introduction: </strong>Current treatments for asthma help to alleviate clinical symptoms but do not cure the disease. In this study, we explored a novel therapeutic approach for the treatment of house dust mite allergen Der p 1induced asthma by aiming to eliminate specific population of B-cells involved in memory IgE response to Der p 1.</p><p><strong>Materials and methods: </strong>To achieve this aim, we developed and evaluated two different proDer p 1-based fusion proteins; an allergen-toxin (proDer p 1-ETA) and an allergen-drug conjugate (ADC) (proDer p 1-SNAP-AURIF) against Der p 1 reactive hybridomas as an <i>in vitro</i> model for Der p 1 reactive human B-cells. The strategy involved the use of proDer p 1 allergen as a cell-specific ligand to selectively deliver the bacterial protein toxin Pseudomonas exotoxin A (ETA) or the synthetic small molecule toxin Auristatin F (AURIF) into the cytosol of Der p 1 reactive cells for highly efficient cell killing.</p><p><strong>Results: </strong>As such, we demonstrated recombinant proDer p 1 fusion proteins were selectively bound by Der p 1 reactive hybridomas as well as primary IgG1<sup>+</sup> B-cells from HDM-sensitized mice. The therapeutic potential of proDer p 1-ETA' and proDer p 1-SNAP-AURIF was confirmed by their selective cytotoxic activities on Der p 1 reactive hybridoma cells. The allergen-toxin demonstrated superior cytotoxic activity, with IC<sub>50</sub> values in the single digit nanomolar value, compared to the ADC.</p><p><strong>Discussions: </strong>Altogether, the proof-of-concept experiments in this study provide a promising approach for the treatment of patients with house dust mite-driven allergic asthma.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"3 1","pages":"ltac023"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}