Shuya Kaneko, Fumiaki Sakura, Kay Tanita, A. Shimbo, R. Nambu, Masashi Yoshida, Shuichiro Umetsu, A. Inui, Chizuru Okada, M. Tsumura, Mamiko Yamada, Hisato Suzuki, K. Kosaki, Osamu Ohara, M. Shimizu, Tomohiro Morio, Satoshi Okada, H. Kanegane
{"title":"Janus kinase inhibitors ameliorate clinical symptoms in patients with STAT3 gain-of-function","authors":"Shuya Kaneko, Fumiaki Sakura, Kay Tanita, A. Shimbo, R. Nambu, Masashi Yoshida, Shuichiro Umetsu, A. Inui, Chizuru Okada, M. Tsumura, Mamiko Yamada, Hisato Suzuki, K. Kosaki, Osamu Ohara, M. Shimizu, Tomohiro Morio, Satoshi Okada, H. Kanegane","doi":"10.1093/immadv/ltad027","DOIUrl":"https://doi.org/10.1093/immadv/ltad027","url":null,"abstract":"Germline gain-of-function (GOF) variants in the signal transducer and activator of transcription 3 (STAT3) gene is an inborn error of immunity presenting with autoimmunity and lymphoproliferation. Symptoms can vary widely, and no effective treatment has been established. This study investigated the efficacy of Janus kinase (JAK) inhibitors (JAKi) in patients with STAT3-GOF. Four patients were enrolled and their clinical symptoms before and after the initiation of treatment with JAKi were described. A cell stimulation assay was performed using Epstein-Barr virus transformed lymphoid cell lines (EBV-LCLs) that were derived from the patients with STAT3-GOF. The patients presented with various symptoms, and these symptoms were mostly improved after the initiation of JAKi treatment. Upon interleukin-6 stimulation, the EBV-LCLs of patients showed enhanced STAT3 phosphorylation compare with those of the EBV-LCLs of healthy controls. In conclusion, four Japanese patients with STAT3-GOF were successfully treated with JAKi. JAKi ameliorated various symptoms and therefore, the use of JAKi could be an effective treatment option for patients with STAT3-GOF.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-11-22eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad026
Katie R Flaherty, Stephanie Kucykowicz, Johannes Schroth, Will Traves, Kyle T Mincham, George E Finney
{"title":"Efficacy of PD-1 checkpoint inhibitor therapy in melanoma and beyond: are peripheral T cell phenotypes the key?","authors":"Katie R Flaherty, Stephanie Kucykowicz, Johannes Schroth, Will Traves, Kyle T Mincham, George E Finney","doi":"10.1093/immadv/ltad026","DOIUrl":"https://doi.org/10.1093/immadv/ltad026","url":null,"abstract":"Summary Immunotherapy treatment strategies have proven effective in a limited portion of patients, where identifying responders from non-responders to treatment remains a challenge. While some indications can be drawn from invasive biopsies, we need more accessible methods for predicting response and better correlates of response prior to starting therapy. Recent work has identified differences in immune composition at baseline in peripheral blood from melanoma patients responding to PD-1 blockade treatment. Through flow cytometric analysis of T cell receptors, phenotypical features of CD8+ and CD4+ T cells and Tregs could allow for the stratification of treatment response. Analysing T cells within peripheral blood could potentially allow for the stratification of PD-1 treatment response prior to therapy in different cancer settings.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DC-targeting Lentivectors for Cancer Immunotherapy","authors":"Ester Gea-Mallorquí, Sarah Rowland-Jones","doi":"10.1093/immadv/ltad023","DOIUrl":"https://doi.org/10.1093/immadv/ltad023","url":null,"abstract":"Abstract Lentivectors (LVs) induce sustained transgene expression and are attractive vaccine platforms for complex immune scenarios like cancer and persistent infections. This review summarises the literature on lentivectors with potential uses for in vivo immunotherapy, focusing on those targeting the most potent antigen-presenting cells: dendritic cells (DCs). There is a growing interest in myeloid-targeting therapies as, by influencing an early stage in the immune hierarchy, they can orchestrate a more diverse and complex targeted immune response. We dissect the nature of DC-targeting LVs and their induced immune responses to understand the state of the art, identify the knowledge gaps and guide efforts to maximise the generation of potent and effective immune responses. Lentivector-based vaccines provide several advantages over other vaccine platforms, such as directed tropism and limited vector immunogenicity, and have been shown to generate effective and sustained immune responses. Overall, DC-targeting lentivectors stand out as promising tools to be exploited in cancer immunotherapy, and new-generation LVs can further exploit the gained knowledge in the study of naturally-occurring lentiviruses for a more directed and adjuvanted response.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-10-25eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad021
Kamran Abbasi, Parveen Ali, Virginia Barbour, Thomas Benfield, Kirsten Bibbins-Domingo, Stephen Hancocks, Richard Horton, Laurie Laybourn-Langton, Robert Mash, Peush Sahni, Wadeia Mohammad Sharief, Paul Yonga, Chris Zielinski
{"title":"Time to treat the climate and nature crisis as one indivisible global health emergency.","authors":"Kamran Abbasi, Parveen Ali, Virginia Barbour, Thomas Benfield, Kirsten Bibbins-Domingo, Stephen Hancocks, Richard Horton, Laurie Laybourn-Langton, Robert Mash, Peush Sahni, Wadeia Mohammad Sharief, Paul Yonga, Chris Zielinski","doi":"10.1093/immadv/ltad021","DOIUrl":"https://doi.org/10.1093/immadv/ltad021","url":null,"abstract":"","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrícia Silva Santos Ribeiro, Hanneke L D M Willemen, Sabine Versteeg, Christian Martin Gil, Niels Eijkelkamp
{"title":"NLRP3 inflammasome activation in sensory neurons promotes chronic inflammatory and osteoarthritis pain","authors":"Patrícia Silva Santos Ribeiro, Hanneke L D M Willemen, Sabine Versteeg, Christian Martin Gil, Niels Eijkelkamp","doi":"10.1093/immadv/ltad022","DOIUrl":"https://doi.org/10.1093/immadv/ltad022","url":null,"abstract":"Abstract Pain is one of the most debilitating symptoms in rheumatic diseases. Pain often persists after total knee replacement in osteoarthritis, or when inflammation is minimal/absent in rheumatoid arthritis. This suggests that pain transitions to a chronic state independent of the original damage/inflammation. Mitochondrial dysfunction in the nervous system promotes chronic pain and is linked to NLRP3 inflammasome activation. Therefore, we investigated the role of mitochondrial dysfunction and NLRP3 inflammasome activation in the transition from acute to persistent inflammation-induced nociplastic pain and in persistent monoiodoacetate-induced osteoarthritis pain. Intraplantar injection of carrageenan in mice induced transient inflammatory pain that resolved within 7 days. A subsequent intraplantar PGE2 injection induced persistent mechanical hypersensitivity, while in naive mice it resolved within one day. Thus, this initial transient inflammation induced maladaptive nociceptor neuroplasticity, so-called hyperalgesic priming. At day 7, when mice were primed, expression of NLRP3 inflammasome pathway components were increased, and dorsal root ganglia neurons displayed signs of activated NLRP3 inflammasome. Inhibition of NLRP3 inflammasome with MCC950 prevented the transition from acute to chronic pain in this hyperalgesic priming model. In mice with persistent monoiodoacetate-induced osteoarthritis pain, neurons displayed signs of mitochondrial oxidative stress and NLRP3 inflammasome activation. Blocking NLRP3 inflammasome activity attenuated established osteoarthritis pain. In males, NLPR3 inhibition had longer lasting effects than in females. Overall, these data suggest that NLRP3 inflammasome activation in sensory neurons, potentially caused by neuronal oxidative stress, promotes development of persistent inflammatory and osteoarthritis pain. Therefore, targeting NLRP3 inflammasome pathway may be a promising approach to treat chronic pain.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-10-12eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad019
{"title":"Correction to: Blockade of innate inflammatory cytokines TNFα, IL-1β, or IL-6 overcomes virotherapy-induced cancer equilibrium to promote tumor regression.","authors":"","doi":"10.1093/immadv/ltad019","DOIUrl":"10.1093/immadv/ltad019","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/immadv/ltad011.].</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-10-12eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad017
{"title":"Correction to: Immunology of allergen immunotherapy.","authors":"","doi":"10.1093/immadv/ltad017","DOIUrl":"10.1093/immadv/ltad017","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/immadv/ltac022.].</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-10-07eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad020
Melissa M Christodoulidou, Neil A Mabbott
{"title":"Efficacy of smallpox vaccines against Mpox infections in humans.","authors":"Melissa M Christodoulidou, Neil A Mabbott","doi":"10.1093/immadv/ltad020","DOIUrl":"10.1093/immadv/ltad020","url":null,"abstract":"<p><p>The Mpox virus (MPXV) is endemic in certain countries in Central and West Africa, where several mammalian species, especially rodents, are natural reservoirs. However, the MPXV can infect nonhuman primates and cause zoonotic infections in humans after close contact with an infected animal. Human-to-human transmission of MPXV can also occur through direct close contact with an infected individual or infected materials. In May 2022 an initial cluster of human Mpox cases was identified in the UK, with the first case confirmed in a patient who had recently travelled to Nigeria. The infection subsequently spread via human-to-human transmission within the UK and Mpox cases began to appear in many other countries around the world where the MPXV is not endemic. No specific treatments for MPXV infection in humans are available. However, data from studies undertaken in Zaire in the 1980s revealed that those with a history of smallpox vaccination during the global smallpox eradication campaign also had good cross-protection against MPXV infection. However, the vaccines used during the global eradication campaign are no longer available. During the 2022 global Mpox outbreak over a million doses of the Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) smallpox vaccine were offered either as pre or postexposure prophylaxis to those at high risk of MPXV infection. Here, we review what has been learned about the efficacy of smallpox vaccines in reducing the incidence of MPXV infections in high-risk close contacts.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2023-08-29eCollection Date: 2023-01-01DOI: 10.1093/immadv/ltad016
Lars Klareskog, Lars Alfredsson
{"title":"Prevention vs treatment of rheumatoid arthritis.","authors":"Lars Klareskog, Lars Alfredsson","doi":"10.1093/immadv/ltad016","DOIUrl":"10.1093/immadv/ltad016","url":null,"abstract":"<p><p>Whether a yet chronic and not curable disease like rheumatoid arthritis (RA) can be subject to prevention or whether available resources should be focused on treatment is a classical dilemma. Similar to the case in most other chronic diseases, the focus in research as well as in clinical practice has been on the treatment of established diseases, resulting in drugs that are efficient in eliminating most joint damage but not able to cure the disease or stop needs for continuous treatment of the disease. Less effort has been spent on identifying and implementing ways to prevent the disease. We argue in this review that knowledge concerning the longitudinal evolvement of the major, 'seropositive' subset of RA has now come to a stage where prevention should be a large part of the research agenda and that we should prepare for prevention as part of clinical practice in RA. We describe briefly the knowledge basis for broad public health-based prevention as well as for a 'precision prevention' strategy. In the latter, individuals at high risk for RA will be identified, monitored, and ultimately provided with advice on how to change lifestyle/environment or be given treatment with drugs able to delay and ultimately stop the development of RA. Whether this potential of precision prevention for RA will change the broader clinical practice will depend on whether specific and long-lasting interference with disease-inducing immunity, ultimately 'tolerance therapy', will become a reality.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}