Immunoinformatics (Amsterdam, Netherlands)最新文献

筛选
英文 中文
Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response 整合单细胞测序与空间定量系统药理学模型spQSP用于个性化预测三阴性乳腺癌免疫治疗反应
Immunoinformatics (Amsterdam, Netherlands) Pub Date : 2021-10-01 DOI: 10.1016/j.immuno.2021.100002
Shuming Zhang , Chang Gong , Alvaro Ruiz-Martinez , Hanwen Wang , Emily Davis-Marcisak , Atul Deshpande , Aleksander S. Popel , Elana J. Fertig
{"title":"Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response","authors":"Shuming Zhang ,&nbsp;Chang Gong ,&nbsp;Alvaro Ruiz-Martinez ,&nbsp;Hanwen Wang ,&nbsp;Emily Davis-Marcisak ,&nbsp;Atul Deshpande ,&nbsp;Aleksander S. Popel ,&nbsp;Elana J. Fertig","doi":"10.1016/j.immuno.2021.100002","DOIUrl":"10.1016/j.immuno.2021.100002","url":null,"abstract":"<div><p>Response to cancer immunotherapies depends on the complex and dynamic interactions between T cell recognition and killing of cancer cells that are counteracted through immunosuppressive pathways in the tumor microenvironment. Therefore, while measurements such as tumor mutational burden provide biomarkers to select patients for immunotherapy, they neither universally predict patient response nor implicate the mechanisms that underlie immunotherapy resistance. Recent advances in single-cell RNA sequencing technology measure cellular heterogeneity within cells of an individual tumor but have yet to realize the promise of predictive oncology. In addition to data, mechanistic multiscale computational models are developed to predict treatment response. Incorporating single-cell data from tumors to parameterize these computational models provides deeper insights into prediction of clinical outcome in individual patients. Here, we integrate whole-exome sequencing and scRNA-seq data from Triple-Negative Breast Cancer patients to model neoantigen burden in tumor cells as input to a spatial Quantitative System Pharmacology model. The model comprises a four-compartmental Quantitative System Pharmacology sub-model to represent a whole patient and a spatial agent-based sub-model to represent tumor volumes at the cellular scale. We use the high-throughput single-cell data to model the role of antigen burden and heterogeneity relative to the tumor microenvironment composition on predicted immunotherapy response. We demonstrate how this integrated modeling and single-cell analysis framework can be used to relate neoantigen heterogeneity to immunotherapy treatment outcomes. Our results demonstrate feasibility of merging single-cell data to initialize cell states in multiscale computational models such as the spQSP for personalized prediction of clinical outcomes to immunotherapy.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.immuno.2021.100002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39565053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
NetMHCphosPan - Pan-specific prediction of MHC class I antigen presentation of phosphorylated ligands NetMHCphosPan-Pan特异性预测磷酸化配体的MHC I类抗原呈递
Immunoinformatics (Amsterdam, Netherlands) Pub Date : 2021-10-01 DOI: 10.1016/j.immuno.2021.100005
Carina Thusgaard Refsgaard , Carolina Barra , Xu Peng , Nicola Ternette , Morten Nielsen
{"title":"NetMHCphosPan - Pan-specific prediction of MHC class I antigen presentation of phosphorylated ligands","authors":"Carina Thusgaard Refsgaard ,&nbsp;Carolina Barra ,&nbsp;Xu Peng ,&nbsp;Nicola Ternette ,&nbsp;Morten Nielsen","doi":"10.1016/j.immuno.2021.100005","DOIUrl":"10.1016/j.immuno.2021.100005","url":null,"abstract":"<div><p>Post-translational modifications of proteins play a crucial part in carcinogenesis. Phosphorylated peptides have shown to be presented by MHC class I molecules and recognised by cytotoxic T cells, making them a promising target for immunotherapy. Identification of phosphorylated MHC class I ligands has so far predominantly been done using bioinformatic tools trained on unmodified peptides. Only one tool, PhosMHCpred, has been developed specifically for the prediction of phosphorylated MHC class I ligands so far and this tool has been trained only on a limited number of alleles and provides a limited peptide length coverage (only including 9-mers).</p><p>Here we propose a method, termed NetMHCphosPan, for the prediction of MHC presented phosphopeptides. The method is trained using the NNAlign_MA framework, which allows incorporating mixed data types and information leverage between data sets resulting in a greatly improved MHC and peptide length coverage and an overall increased predictive power compared to PhosMHCpred. Motif deconvolution suggested a strong preference for phosphosites to be located in position 4 of the binding motif, and enrichment of proline at P5 and arginine at P1. The improved performance, driven by the extended length and allelic coverage, of NetMHCphosPan over current state-of-the-art methods, was further validated on a large benchmark data set independent from the model development.</p><p>In conclusion, we have confirmed the high power of NNAlign_MA for motif deconvolution of complex immuno-peptidomics data and have developed a novel method for prediction of MHC presented phosphopeptides with improved predictive power and a broader peptide length and MHC coverage compared to current state-of-the-art methods. The developed method is available at <span>http://www.cbs.dtu.dk/services/NetMHCphosPan-1.0</span><svg><path></path></svg>.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"1 ","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.immuno.2021.100005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49638856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Immunoinformatics 免疫信息学
Immunoinformatics (Amsterdam, Netherlands) Pub Date : 2020-01-01 DOI: 10.1007/978-1-0716-0389-5
Namrata Tomar
{"title":"Immunoinformatics","authors":"Namrata Tomar","doi":"10.1007/978-1-0716-0389-5","DOIUrl":"https://doi.org/10.1007/978-1-0716-0389-5","url":null,"abstract":"","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-1-0716-0389-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51706106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信