R. Artikboeva, Yue Wu, Mingxing Yang, C. Jie, Q. Heng
{"title":"Preparation and Application of the Hydrophilic Amino-Silicone Softener by Emulsion Polymerization","authors":"R. Artikboeva, Yue Wu, Mingxing Yang, C. Jie, Q. Heng","doi":"10.4236/aces.2020.101001","DOIUrl":"https://doi.org/10.4236/aces.2020.101001","url":null,"abstract":"The amino poly-siloxane was modified with self-made polyether silicones by the crafts of emulsion polymerization. We studied the emulsifier, the dosage of emulsifier initiator, polyether/silane coupling agent, pH value. There are some results of the research indicated in the following. First, there are many factors for the hydrophilic amino-silicone softener both on the polymerization process and the performance, such as the proportion and amount of emulsifier, initiator dosage, the mass ratio of the polyether and hydrogen silicone oil, the choice of silicone coupling agent, and the ratio and dosage of polyether silicones silane coupling agent. Second, the amount of hydrogen of the hydrogen silicones and the choice of catalyst are the key points on the synthesis of polyether silicones. The amount of hydrogen should be low and the catalyst must be economical and efficient and its introduction should be small and times, other more the holding time is not too long. The next one is that, in the process of hydrolysis of silane coupling agent, we need some acid to adjust pH value, or they will be broken down. The most important one but not the last is that the epoxy group can improve the products low-temperature supple and the persistence of the finishing fabric, furthermore it can reduce yellowing and has a good stability of the inorganic salt, however, it will be destroyed if the reaction temperature for epoxy is too high. What’s more, it is very economical and environmental that the process of emulsion is simple and with less emulsifier.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"60 1","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89358539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Theory of Conjugate Reactions in the Context of Modern Ideas","authors":"T. Nagiev","doi":"10.4236/aces.2020.101004","DOIUrl":"https://doi.org/10.4236/aces.2020.101004","url":null,"abstract":"Various types of possible interactions between reactions are discussed. Some of them are united by the general idea of chemical reaction interference. The ideas on conjugated reactions are broadened and the determinant formula is deduced; the coherence condition for chemical interference is formulated and associated phase shifts are determined. It is shown how interaction between reactions may be qualitatively and quantitatively assessed and kinetic analysis of complex reactions with under-researched mechanisms may be performed with simultaneous consideration of the stationary concentration method. Using particular examples, interference of hydrogen peroxide dissociation and oxidation of substrates is considered.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76243143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuren Peng, Wanying Wang, Long Xianjun, P. Qiu, Liu Qiaoqiao, Yang Yuanxiang, Yang Xuechun, Meili Wang, Yin Songmao, Xingchu Gong
{"title":"Sinomenine Purification by Continuous Liquid-Liquid Extraction Process with Centrifugal Extractors","authors":"Zuren Peng, Wanying Wang, Long Xianjun, P. Qiu, Liu Qiaoqiao, Yang Yuanxiang, Yang Xuechun, Meili Wang, Yin Songmao, Xingchu Gong","doi":"10.4236/aces.2020.103012","DOIUrl":"https://doi.org/10.4236/aces.2020.103012","url":null,"abstract":"Continuous manufacturing is considered as one of the future trends of pharmaceutical engineering. In this work, continuous liquid-liquid extraction for sinomenine purification was realized with the usage of centrifugal extractors. Chloroform was used as the extractant because of the high distribution coefficient (>100). Higher extraction ratio can be obtained when using the centrifugal extractor of Model CWL50-N. The extraction ratio of the second-stage extraction was higher than that of the first-stage extraction. The extraction ratio of the second-stage countercurrent extraction was higher than that of second-stage cross-flow extraction. When chloroform phase was recycled for liquid-liquid extraction, the extraction ratio was also higher than 95%. This work can also be an example of continuous liquid-liquid extraction for the separation of other Chinese medicine components.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86900051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predictive Models for Optimisation of Acetone Mediated Extraction of Polyphenolic Compounds from By-Product of Cider Production","authors":"S. Ibrahim, Regina C D Santos, S. Bowra","doi":"10.4236/aces.2020.102006","DOIUrl":"https://doi.org/10.4236/aces.2020.102006","url":null,"abstract":"Response surface methodology (RSM) was applied to provide predictive models for optimisation of extraction of selected polyphenolic compounds from cider apple pomace under aqueous acetone. The design of experiment (DoE) was conducted to evaluate the influence of acetone concentration % (v/v), solid-to solvent ratio % (w/v), temperature (˚C) and extraction time (min) and their interaction on phenolic contents, using the Central Composite Rotatable Design (CCRD). The experimental data were analysed to fit statistical models for recovery of phenolic compounds. The selected models were significant (P 0.05), except for Chlorogenic acid and Quercetin 3-glucoside which had significant lack of fits (P R2 > 0.9000 and adjusted reasonable agrees with predicted . Coefficient of variation < 5% for each determination at the 95% confidence interval. These models could be relied upon to achieve optimal concentrations of polyphenolic compounds for applications in nutraceutical, pharmaceutical and cosmetic industries.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82261545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice Boltzmann Modeling for Chemical Engineering","authors":"","doi":"10.1016/s0065-2377(20)x0002-0","DOIUrl":"https://doi.org/10.1016/s0065-2377(20)x0002-0","url":null,"abstract":"","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"176 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91537345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Otani, Toshinori Takahashi, Hitoshi Habuka, Y. Ishida, S. Ikeda, S. Hara
{"title":"Quartz Crystal Microbalances for Evaluating Gas Motion Differences between Dichlorosilane and Trichlorosilane in Ambient Hydrogen in a Slim Vertical Cold Wall Chemical Vapor Deposition Reactor","authors":"M. Otani, Toshinori Takahashi, Hitoshi Habuka, Y. Ishida, S. Ikeda, S. Hara","doi":"10.4236/aces.2020.103014","DOIUrl":"https://doi.org/10.4236/aces.2020.103014","url":null,"abstract":"A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties. Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87194722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rihab Musaad Moawia, M. Nasef, N. Mohamed, A. Ripin, Hamdy Farag
{"title":"Production of Biodiesel from Cottonseed Oil over Aminated Flax Fibres Catalyst: Kinetic and Thermodynamic Behaviour and Biodiesel Properties","authors":"Rihab Musaad Moawia, M. Nasef, N. Mohamed, A. Ripin, Hamdy Farag","doi":"10.4236/aces.2019.94021","DOIUrl":"https://doi.org/10.4236/aces.2019.94021","url":null,"abstract":"The transesterification of cottonseed oil in the presence of methanol to fatty acid methyl ester (FAME) using flax-based fibres catalyst modified with an alkaline moiety was studied. The catalyst was prepared by radiation induced grafting (RIG) of glycidyl methacrylate (GMA) onto dignified flax fibres followed by amination with diethylamine (DEA) and treatment with NaOH solution. A maximum FAME conversion of 88.6% was obtained at 60°;C with a catalyst dosage of 2.5 wt%, an oil/methanol ratio of 1:33 and a time of 2 h. The biodiesel quality was verified by nuclear magnetic resonance (1H NMR). Kinetic analysis showed a reaction activation energy of 69.33 kJ·molˉ1 and a rate constant of 0.00349 minˉ1 indicating that the catalytic reaction was kinetically controlled. Thermodynamic analyses revealed that the reaction was reversible, non-spontaneous and endothermic with an enthalpy of 66.62 kJ·molˉ1. The obtained biodiesel showed physical and chemical characteristics complying with ASTM D6751. It can be concluded that the alkaline biopolymer catalyst prepared in the present study is a promising green candidate for biodiesel production.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76280960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Structural and Electronic Properties of [Tris(Benzene-1,2-Dithiolato)M]3- (M = V, Cr, Mn, Fe and Co) Complexes: A Spectroscopic and Density Functional Theoretical Study","authors":"M. Matin, Md Abdur Rahman","doi":"10.4236/aces.2019.94023","DOIUrl":"https://doi.org/10.4236/aces.2019.94023","url":null,"abstract":"In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79359838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Influence of the Microstructure of W/O Emulsion of Waxy Crude Oil on Its Rheology","authors":"Lixin Wei, Hangming Bi, Jian Zhao, D. Hang, Dawei Wang, Xian Zhang","doi":"10.4236/aces.2019.94022","DOIUrl":"https://doi.org/10.4236/aces.2019.94022","url":null,"abstract":"In this article, the viscosity-temperature characteristics of W/O waxy crude oil emulsion under different microstructures were studied, and the characteristics of the microstructure were described by the analysis of the dispersed phase parameters including the average particle size, the degree of dispersion, and the nonuniformity of average particle size. On this basis, we discuss the effects of temperature, shear rate and the microstructure on the apparent viscosity of Daqing crude oil emulsion. The results showed that with the increasing of stirring speed, the number of droplets and the degree of dispersion phase dispersion increased, average droplet size and nonuniformity of average particle size reduced; the average particle size of the dispersed phase decreased by 0.5 μm, and the abnormal point increased by about 1°C. For emulsions with the same microstructure, as the temperature or shear rate rising, the rate and percentage of the reduction in apparent viscosity decreased. At the same temperature or shear rate, the reduction rate in apparent viscosity increases with the average particle size of dispersed phase decreases, in contrast to the percentage of reduction in apparent viscosity, which revealed a definitive correlation between average particle size of dispersed phase and the apparent viscosity in the non-Newtonian fluid that from 34°;C to 48°;C; the absolute value of Pearson’s correlation coefficient was above 0.8, which was highly negatively correlated; as the temperature rose, the absolute value of Pearson’s correlation coefficient decreased from 0.839 to 0.216.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90872712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research Progress on Azeotropic Distillation Technology","authors":"Ying Guo, Lei Wang","doi":"10.4236/aces.2019.94024","DOIUrl":"https://doi.org/10.4236/aces.2019.94024","url":null,"abstract":"Azeotropic distillation is a special distillation method for separating liquid mixtures, which has better distillation effect and obvious advantages of energy saving and consumption reduction compared with traditional distillation. In this paper, the latest research progress of azeotropic distillation technology in separation, synthesis and energy saving at home and abroad is reviewed. The research progress in separation is reflected in product separation and product purification, and the research progress in energy saving is reflected in heat pump distillation and dividing wall column distillation respectively. Existing studies have shown that azeotropic distillation technology can produce higher purity target products than conventional distillation for the separation and purification of azeotropic or near-boiling compounds. Heat pump distillation and dividing wall column distillation are used in azeotropic distillation field, resulting in obvious energy-saving effect for distillation equipment. The follow-up research direction of new separation technology with the goal of reducing energy consumption and exploring new materials as entraining agents should be studied in detail, which provides certain guidance for the development of distillation technology in China’s chemical industry.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87774232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}