IEEE transactions on artificial intelligence最新文献

筛选
英文 中文
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-06-02 DOI: 10.1109/TAI.2025.3569136
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3569136","DOIUrl":"https://doi.org/10.1109/TAI.2025.3569136","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 6","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11020980","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-04-30 DOI: 10.1109/TAI.2025.3557987
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3557987","DOIUrl":"https://doi.org/10.1109/TAI.2025.3557987","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 5","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-03-31 DOI: 10.1109/TAI.2025.3551528
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3551528","DOIUrl":"https://doi.org/10.1109/TAI.2025.3551528","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-03-10 DOI: 10.1109/TAI.2025.3546710
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3546710","DOIUrl":"https://doi.org/10.1109/TAI.2025.3546710","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918892","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-03-03 DOI: 10.1109/TAI.2025.3544009
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3544009","DOIUrl":"https://doi.org/10.1109/TAI.2025.3544009","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 2","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Operationalizing Responsible AI 嘉宾评论:实施负责任的人工智能
IEEE transactions on artificial intelligence Pub Date : 2025-03-03 DOI: 10.1109/TAI.2025.3527806
Qinghua Lu;Apostol Vassilev;Jun Zhu;Foutse Khomh
{"title":"Guest Editorial: Operationalizing Responsible AI","authors":"Qinghua Lu;Apostol Vassilev;Jun Zhu;Foutse Khomh","doi":"10.1109/TAI.2025.3527806","DOIUrl":"https://doi.org/10.1109/TAI.2025.3527806","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 2","pages":"252-253"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COLT: Cyclic Overlapping Lottery Tickets for Faster Pruning of Convolutional Neural Networks 基于循环重叠彩票的卷积神经网络快速剪枝
IEEE transactions on artificial intelligence Pub Date : 2025-01-28 DOI: 10.1109/TAI.2025.3534745
Md. Ismail Hossain;Mohammed Rakib;M. M. Lutfe Elahi;Nabeel Mohammed;Shafin Rahman
{"title":"COLT: Cyclic Overlapping Lottery Tickets for Faster Pruning of Convolutional Neural Networks","authors":"Md. Ismail Hossain;Mohammed Rakib;M. M. Lutfe Elahi;Nabeel Mohammed;Shafin Rahman","doi":"10.1109/TAI.2025.3534745","DOIUrl":"https://doi.org/10.1109/TAI.2025.3534745","url":null,"abstract":"Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve accuracy similar to that of the original unpruned network. We introduce a novel winning ticket called cyclic overlapping lottery ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. Based on object recognition and detection tasks, we show that the accuracy of COLT is on par with the winning tickets of the lottery ticket hypothesis and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular iterative magnitude pruning method. In addition, we also notice that COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100, TinyImageNet, and ImageNet datasets and report superior performance than the state-of-the-art methods. The codes are available at: <uri>https://github.com/ismail31416/COLT</uri>.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 6","pages":"1664-1678"},"PeriodicalIF":0.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HWEFIS: A Hybrid Weighted Evolving Fuzzy Inference System for Nonstationary Data Streams HWEFIS:一种非平稳数据流的混合加权演化模糊推理系统
IEEE transactions on artificial intelligence Pub Date : 2025-01-27 DOI: 10.1109/TAI.2025.3534755
Tao Zhao;Haoli Li
{"title":"HWEFIS: A Hybrid Weighted Evolving Fuzzy Inference System for Nonstationary Data Streams","authors":"Tao Zhao;Haoli Li","doi":"10.1109/TAI.2025.3534755","DOIUrl":"https://doi.org/10.1109/TAI.2025.3534755","url":null,"abstract":"For the problem of concept drift of nonstationary data streams, most evolving fuzzy inference systems (EFISs) still encounter problems. First, a single EFIS has difficulty quickly adjusting its own structure and parameters to adapt itself in an environment with obvious dynamic changes (such as sudden drift). Second, most ensemble EFISs adjust their weights according to errors, which is prone to the risk of model undertraining and repeated training. In this article, a new ensemble EFIS, referred to as a hybrid weighted evolving fuzzy inference system (HWEFIS), is proposed. The HWEFIS uses a detection method based on the edge heterogeneous distance (EHD) to mine similarity information between data distributions after data chunks arrive and uses Dempster–Shafer (DS) evidence theory to combine similarity and error information to generate hybrid weights. In addition, a forgetting factor and penalty mechanism are introduced into each base learner, which increases the ability of the base learner to address nonstationary problems. Experiments are carried out on synthetic datasets and real-world datasets. The experimental results show that the HWEFIS can achieve better performance in nonstationary data streams with complex drift, effectively suppresses the influence of concept drift, and is insensitive to the size of the data chunks.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 6","pages":"1679-1694"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AttDCT: Attention-Based Deep Learning Approach for Time Series Classification in the DCT Domain 基于注意力的深度学习方法在DCT领域的时间序列分类
IEEE transactions on artificial intelligence Pub Date : 2025-01-27 DOI: 10.1109/TAI.2025.3534141
Amine Haboub;Hamza Baali;Abdesselam Bouzerdoum
{"title":"AttDCT: Attention-Based Deep Learning Approach for Time Series Classification in the DCT Domain","authors":"Amine Haboub;Hamza Baali;Abdesselam Bouzerdoum","doi":"10.1109/TAI.2025.3534141","DOIUrl":"https://doi.org/10.1109/TAI.2025.3534141","url":null,"abstract":"This article proposes a new deep learning framework for time series classification in the discrete cosine transform (DCT) domain with spectral enhancement and self-attention mechanisms. The time series signal is first partitioned into discrete segments. Each segment is rearranged into a matrix using a sliding window. The signal matrix is then transformed to spectral coefficients using a two-dimensional (2-D) DCT. This is followed by logarithmic contrast enhancement and spectral normalization to enhance the DCT coefficients. The resulting enhanced coefficient matrix serves as input to a deep neural network architecture comprising a self-attention layer, a multilayer convolutional neural network (CNN), and a fully connected multilayer perceptron (MLP) for classification. The AttDCT CNN model is evaluated and benchmarked on 13 different time series classification problems. The experimental results show that the proposed model outperforms state-of-the-art deep learning methods by an average of 2.1% in classification accuracy. It achieves higher classification accuracy on ten of the problems and similar results on the remaining three.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 6","pages":"1626-1638"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavioral Decision-Making of Mobile Robots Simulating the Functions of Cerebellum, Basal Ganglia, and Hippocampus 模拟小脑、基底神经节和海马体功能的移动机器人行为决策
IEEE transactions on artificial intelligence Pub Date : 2025-01-27 DOI: 10.1109/TAI.2025.3534150
Dongshu Wang;Qi Liu;Yihai Duan
{"title":"Behavioral Decision-Making of Mobile Robots Simulating the Functions of Cerebellum, Basal Ganglia, and Hippocampus","authors":"Dongshu Wang;Qi Liu;Yihai Duan","doi":"10.1109/TAI.2025.3534150","DOIUrl":"https://doi.org/10.1109/TAI.2025.3534150","url":null,"abstract":"In unknown environments, behavioral decision-making of mobile robots is a crucial research topic in the field of robotics applications. To address the low learning ability and the difficulty of learning from the unknown environments for mobile robots, this work proposes a new learning model that integrates the supervised learning of the cerebellum, reinforcement learning of the basal ganglia, and memory consolidation of the hippocampus. First, to reduce the impact of noise on inputs and enhance the network's efficiency, a multineuron winning strategy and the refinement of the top-<inline-formula><tex-math>$k$</tex-math></inline-formula> competition mechanism have been adopted. Second, to increase the network's learning speed, a negative learning mechanism has been designed, which allows the robot to avoid obstacles more quickly by weakening the synaptic connections between error neurons. Third, to enhance the decision ability of cerebellar supervised learning, simulating the hippocampal memory consolidation mechanism, memory replay during the agent's offline state enables autonomous learning in the absence of real-time interactions. Finally, to better adjust the roles of cerebellar supervised learning and basal ganglia reinforcement learning in robot behavioral decision-making, a new similarity indicator has been designed. Simulation experiments and real-world experiments validate the effectiveness of the proposed model in this work.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 6","pages":"1639-1650"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信