IEEE transactions on artificial intelligence最新文献

筛选
英文 中文
IEEE Transactions on Artificial Intelligence Publication Information
IEEE transactions on artificial intelligence Pub Date : 2025-03-31 DOI: 10.1109/TAI.2025.3551528
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3551528","DOIUrl":"https://doi.org/10.1109/TAI.2025.3551528","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information
IEEE transactions on artificial intelligence Pub Date : 2025-03-10 DOI: 10.1109/TAI.2025.3546710
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3546710","DOIUrl":"https://doi.org/10.1109/TAI.2025.3546710","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918892","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information
IEEE transactions on artificial intelligence Pub Date : 2025-03-03 DOI: 10.1109/TAI.2025.3544009
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2025.3544009","DOIUrl":"https://doi.org/10.1109/TAI.2025.3544009","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 2","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Operationalizing Responsible AI
IEEE transactions on artificial intelligence Pub Date : 2025-03-03 DOI: 10.1109/TAI.2025.3527806
Qinghua Lu;Apostol Vassilev;Jun Zhu;Foutse Khomh
{"title":"Guest Editorial: Operationalizing Responsible AI","authors":"Qinghua Lu;Apostol Vassilev;Jun Zhu;Foutse Khomh","doi":"10.1109/TAI.2025.3527806","DOIUrl":"https://doi.org/10.1109/TAI.2025.3527806","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 2","pages":"252-253"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on Artificial Intelligence Vol. 5 2024 Index IEEE Transactions on Artificial Intelligence Vol.
IEEE transactions on artificial intelligence Pub Date : 2025-01-20 DOI: 10.1109/TAI.2025.3531741
{"title":"2024 Index IEEE Transactions on Artificial Intelligence Vol. 5","authors":"","doi":"10.1109/TAI.2025.3531741","DOIUrl":"https://doi.org/10.1109/TAI.2025.3531741","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"1-93"},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847313","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143183912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2025-01-14 DOI: 10.1109/TAI.2024.3525221
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2024.3525221","DOIUrl":"https://doi.org/10.1109/TAI.2024.3525221","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Future Directions in Artificial Intelligence Research 社论:人工智能研究的未来方向
IEEE transactions on artificial intelligence Pub Date : 2024-12-11 DOI: 10.1109/TAI.2024.3501912
Hussein Abbass
{"title":"Editorial: Future Directions in Artificial Intelligence Research","authors":"Hussein Abbass","doi":"10.1109/TAI.2024.3501912","DOIUrl":"https://doi.org/10.1109/TAI.2024.3501912","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"5858-5862"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10794556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Artificial Intelligence Publication Information IEEE人工智能学报
IEEE transactions on artificial intelligence Pub Date : 2024-12-11 DOI: 10.1109/TAI.2024.3509237
{"title":"IEEE Transactions on Artificial Intelligence Publication Information","authors":"","doi":"10.1109/TAI.2024.3509237","DOIUrl":"https://doi.org/10.1109/TAI.2024.3509237","url":null,"abstract":"","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10794554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ClusVPR: Efficient Visual Place Recognition With Clustering-Based Weighted Transformer
IEEE transactions on artificial intelligence Pub Date : 2024-12-02 DOI: 10.1109/TAI.2024.3510479
Yifan Xu;Pourya Shamsolmoali;Masoume Zareapoor;Jie Yang
{"title":"ClusVPR: Efficient Visual Place Recognition With Clustering-Based Weighted Transformer","authors":"Yifan Xu;Pourya Shamsolmoali;Masoume Zareapoor;Jie Yang","doi":"10.1109/TAI.2024.3510479","DOIUrl":"https://doi.org/10.1109/TAI.2024.3510479","url":null,"abstract":"Visual place recognition (VPR) is a highly challenging task that has a wide range of applications, including robot navigation and self-driving vehicles. VPR is a difficult task due to duplicate regions and insufficient attention to small objects in complex scenes, resulting in recognition deviations. In this article, we present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects. Different from existing methods that rely on convolutional neural networks (CNNs) for feature map generation, ClusVPR introduces a unique paradigm called clustering-based weighted transformer network (CWTNet). CWTNet uses the power of clustering-based weighted feature maps and integrates global dependencies to effectively address visual deviations encountered in large-scale VPR problems. We also introduce the optimized-VLAD (OptLAD) layer, which significantly reduces the number of parameters and enhances model efficiency. This layer is specifically designed to aggregate the information obtained from scale-wise image patches. Additionally, our pyramid self-supervised strategy focuses on extracting representative and diverse features from scale-wise image patches rather than from entire images. This approach is essential for capturing a broader range of information required for robust VPR. Extensive experiments on four VPR datasets show our model's superior performance compared to existing models while being less complex.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"1038-1049"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unformer: A Transformer-Based Approach for Adaptive Multiscale Feature Aggregation in Underwater Image Enhancement
IEEE transactions on artificial intelligence Pub Date : 2024-11-29 DOI: 10.1109/TAI.2024.3508667
Yuhao Qing;Yueying Wang;Huaicheng Yan;Xiangpeng Xie;Zhengguang Wu
{"title":"Unformer: A Transformer-Based Approach for Adaptive Multiscale Feature Aggregation in Underwater Image Enhancement","authors":"Yuhao Qing;Yueying Wang;Huaicheng Yan;Xiangpeng Xie;Zhengguang Wu","doi":"10.1109/TAI.2024.3508667","DOIUrl":"https://doi.org/10.1109/TAI.2024.3508667","url":null,"abstract":"Underwater imaging is often compromised by light scattering and absorption, resulting in image degradation and distortion. This manifests as blurred details, color shifts, and diminished illumination and contrast, thereby hindering advancements in underwater research. To mitigate these issues, we propose Unformer, an innovative underwater image enhancement (UIE) technique that leverages a transformer-based architecture for multiscale adaptive feature aggregation. Our approach employs a multiscale feature fusion strategy that adaptively restores illumination and detail features. We reevaluate the relationship between convolution and transformer to develop a novel encoder structure. This structure effectively integrates both long-range and short-range dependencies, dynamically combines local and global features, and constructs a comprehensive global context. Furthermore, we propose a unique multibranch decoder architecture that enhances and efficiently extracts spatial context information through the transformer module. Extensive experiments on three datasets demonstrate that our proposed method outperforms other techniques in both subjective and objective evaluations. Compared with the latest methods, Unformer has improved the peak signal-to-noise ratio (PSNR) by 19.5% and 14.8% respectively on the LSUI and EUVP datasets. The code is available at: <uri>https://github.com/yhflq/Unformer</uri>.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"1024-1037"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信