神经网络剪枝的确定性-概率方法

Soumyadipta Banerjee;Jiaul H. Paik
{"title":"神经网络剪枝的确定性-概率方法","authors":"Soumyadipta Banerjee;Jiaul H. Paik","doi":"10.1109/TAI.2025.3558718","DOIUrl":null,"url":null,"abstract":"Modern deep networks are highly over-parameterized. Thus, training and testing such models in various applications are computationally intensive with excessive memory and energy requirements. Network pruning aims to find smaller subnetworks from within these dense networks that do not compromise on the test accuracy. In this article, we present a probabilistic and deterministic pruning methodology which determines the likelihood of retention of the weight parameters by modeling the layer-specific distribution of extreme values of the weights. Our method automatically finds the sparsity in each layer, unlike existing pruning techniques which require an explicit input of the sparsity information. Experiments in the present work show that deterministic–probabilistic pruning consistently achieves high sparsity levels, ranging from 65 to 95%, while maintaining comparable or improved testing accuracy across multiple datasets such as MNIST, CIFAR-10, and Tiny ImageNet, on architectures including VGG-16, ResNet-18, and ResNet-50.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 10","pages":"2830-2839"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deterministic–Probabilistic Approach to Neural Network Pruning\",\"authors\":\"Soumyadipta Banerjee;Jiaul H. Paik\",\"doi\":\"10.1109/TAI.2025.3558718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern deep networks are highly over-parameterized. Thus, training and testing such models in various applications are computationally intensive with excessive memory and energy requirements. Network pruning aims to find smaller subnetworks from within these dense networks that do not compromise on the test accuracy. In this article, we present a probabilistic and deterministic pruning methodology which determines the likelihood of retention of the weight parameters by modeling the layer-specific distribution of extreme values of the weights. Our method automatically finds the sparsity in each layer, unlike existing pruning techniques which require an explicit input of the sparsity information. Experiments in the present work show that deterministic–probabilistic pruning consistently achieves high sparsity levels, ranging from 65 to 95%, while maintaining comparable or improved testing accuracy across multiple datasets such as MNIST, CIFAR-10, and Tiny ImageNet, on architectures including VGG-16, ResNet-18, and ResNet-50.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 10\",\"pages\":\"2830-2839\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10959060/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10959060/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代深度网络是高度过度参数化的。因此,在各种应用程序中训练和测试这样的模型是计算密集型的,并且需要过多的内存和能量。网络修剪的目的是在这些密集的网络中找到较小的子网,这些子网不会影响测试的准确性。在本文中,我们提出了一种概率和确定性修剪方法,该方法通过对权重极值的特定层分布建模来确定权重参数保留的可能性。我们的方法可以自动找到每一层的稀疏性,而不像现有的修剪技术需要显式输入稀疏性信息。本工作中的实验表明,确定性-概率修剪始终达到高稀疏度水平,范围从65到95%,同时在多个数据集(如MNIST, CIFAR-10和Tiny ImageNet)上保持相当或改进的测试精度,架构包括VGG-16, ResNet-18和ResNet-50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deterministic–Probabilistic Approach to Neural Network Pruning
Modern deep networks are highly over-parameterized. Thus, training and testing such models in various applications are computationally intensive with excessive memory and energy requirements. Network pruning aims to find smaller subnetworks from within these dense networks that do not compromise on the test accuracy. In this article, we present a probabilistic and deterministic pruning methodology which determines the likelihood of retention of the weight parameters by modeling the layer-specific distribution of extreme values of the weights. Our method automatically finds the sparsity in each layer, unlike existing pruning techniques which require an explicit input of the sparsity information. Experiments in the present work show that deterministic–probabilistic pruning consistently achieves high sparsity levels, ranging from 65 to 95%, while maintaining comparable or improved testing accuracy across multiple datasets such as MNIST, CIFAR-10, and Tiny ImageNet, on architectures including VGG-16, ResNet-18, and ResNet-50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信