Andrea Scheidig, Robert Hartramph, Benjamin Schuetz, Steffen Mueller, Kathleen S Kunert, Johanna Lahne, Ute Oelschlegel, Ruediger Scheidig, Horst-Michael Gross
{"title":"Feasibility Study: Towards a Robot-Assisted Gait Training in Ophthalmological Rehabilitation.","authors":"Andrea Scheidig, Robert Hartramph, Benjamin Schuetz, Steffen Mueller, Kathleen S Kunert, Johanna Lahne, Ute Oelschlegel, Ruediger Scheidig, Horst-Michael Gross","doi":"10.1109/ICORR58425.2023.10304760","DOIUrl":"10.1109/ICORR58425.2023.10304760","url":null,"abstract":"<p><p>The idea of using mobile assistance robots for gait training in rehabilitation has been increasingly explored in recent years due to the associated benefits. This paper describes how the previous results of research and praxis on gait training with a mobile assistance robot in orthopedic rehabilitation can be transferred to ophthalmic-related orientation and mobility training for blind and visually impaired people. To this end, the specific requirements for such orientation and mobility training are presented from a therapeutic perspective. Using sensory data, it is investigated how the analysis of training errors can be automated and transferred back to the training person. These pre-examinations are the prerequisite for any form of robot-assisted mobile gait training in ophthamological rehabilitation, which does not exist so far and which is expected to be of great benefit to these patients.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Dalla Gasperina, Alexandre L Ratschat, Laura Marchal-Crespo
{"title":"Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation.","authors":"Stefano Dalla Gasperina, Alexandre L Ratschat, Laura Marchal-Crespo","doi":"10.1109/ICORR58425.2023.10304703","DOIUrl":"10.1109/ICORR58425.2023.10304703","url":null,"abstract":"<p><p>High transparency is a fundamental requirement for upper-limb exoskeletons to promote active patient participation. Although various control strategies have been suggested to improve the transparency of these robots, there are still some limitations, such as the need for precise dynamic models and potential safety issues when external forces are applied to the robot. This study presents a novel hybrid controller designed to tackle these limitations by combining a traditional zero-torque controller with an interaction torque observer that compensates for residual undesired disturbances. The transparency of the proposed controller was evaluated using both quantitative-e.g., residual joint torques and movement smoothness-and qualitative measures-e.g., comfort, agency, and perceived resistance-in a pilot study with six healthy participants. The performance of the new controller was compared to that of two conventional controllers: a zero-torque closed-loop controller and a velocity-based disturbance observer. Our preliminary results show that the proposed hybrid controller may be a good alternative to state-of-the-art controllers as it allows participants to perform precise and smooth movements with low interaction joint torques. Importantly, participants rated the new controller higher in comfort and agency, and lower in perceived resistance. This study highlights the importance of incorporating both quantitative and qualitative assessments in evaluating control strategies developed to enhance the transparency of rehabilitation robots.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Mayrhuber, Mathilde Lestoille, Sebastian D Andres, Jeremia P O Held, Andreas R Luft, Franziska Ryser, Roger Gassert, Chris Awai Easthope, Olivier Lambercy
{"title":"Movement Reminders to Encourage Arm Use During Daily Life in Stroke Patients.","authors":"Laura Mayrhuber, Mathilde Lestoille, Sebastian D Andres, Jeremia P O Held, Andreas R Luft, Franziska Ryser, Roger Gassert, Chris Awai Easthope, Olivier Lambercy","doi":"10.1109/ICORR58425.2023.10304727","DOIUrl":"10.1109/ICORR58425.2023.10304727","url":null,"abstract":"<p><p>Stroke is a leading cause of long-term disability, such as loss of upper limb function. Active arm movement and frequent practice are essential to regain such function. Wearable sensors that trigger individualized movement reminders can promote awareness of the affected limb during periods of inactivity. This study investigated the immediate effect of vibrotactile reminders based on activity counts on affected arm use, the evolution of the effect throughout a 6-week intervention at home, and whether the time of the day influences the response to the reminder. Thirteen participants who experienced a unilateral ischemic stroke were included in the analysis. Activity counts were found to increase significantly after receiving a reminder. The immediate effect of receiving a reminder was maintained throughout the day as well as during the study duration of 6 weeks. In conclusion, wearable activity trackers with a feature to trigger individualized vibrotactile reminders could be a promising rehabilitation tool to increase arm activity of the affected side in stroke patients in their home environment.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao-Yuan Wan, Yi-Xing Liu, Xiaochen Zhang, Ruoli Wang
{"title":"An Integrated Eye-Tracking and Motion Capture System in Synchronized Gaze and Movement Analysis.","authors":"Zhao-Yuan Wan, Yi-Xing Liu, Xiaochen Zhang, Ruoli Wang","doi":"10.1109/ICORR58425.2023.10304692","DOIUrl":"10.1109/ICORR58425.2023.10304692","url":null,"abstract":"<p><p>Integrating mobile eye-tracking and motion capture emerges as a promising approach in studying visual-motor coordination, due to its capability of expressing gaze data within the same laboratory-centered coordinate system as body movement data. In this paper, we proposed an integrated eye-tracking and motion capture system, which can record and analyze temporally and spatially synchronized gaze and motion data during dynamic movement. The accuracy of gaze measurement were evaluated on five participants while they were instructed to view fixed vision targets at different distances while standing still or walking towards the targets. Similar accuracy could be achieved in both static and dynamic conditions. To demonstrate the usability of the integrated system, several walking tasks were performed in three different pathways. Results revealed that participants tended to focus their gaze on the upcoming path, especially on the downward path, possibly for better navigation and planning. In a more complex pathway, coupled with more gaze time on the pathway, participants were also found having the longest step time and shortest step length, which led to the lowest walking speed. It was believed that the integration of eye-tracking and motion capture is a feasible and promising methodology quantifying visual-motor coordination in locomotion.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron T Wang, Connor D Olsen, W Caden Hamrick, Jacob A George
{"title":"Correcting Temporal Inaccuracies in Labeled Training Data for Electromyographic Control Algorithms.","authors":"Aaron T Wang, Connor D Olsen, W Caden Hamrick, Jacob A George","doi":"10.1109/ICORR58425.2023.10304728","DOIUrl":"10.1109/ICORR58425.2023.10304728","url":null,"abstract":"<p><p>Electromyographic (EMG) control relies on supervised-learning algorithms that correlate EMG to motor intent. The quality of the training dataset is critical to the runtime performance of the algorithm, but labeling motor intent is imprecise and imperfect. Traditional EMG training data is collected while participants mimic predetermined movements of a virtual hand with their own hand. This assumes participants are perfectly synchronized with the predetermined movements, which is unlikely due to reaction time and signal-processing delays. Prior work has used cross-correlation to globally shift and re-align kinematic data and EMG. Here, we quantify the impact of this global re-alignment on both classification algorithms and regression algorithms with and without a human in the loop. We also introduce a novel trial-by-trial re-alignment method to re-align EMG with kinematics on a per-movement basis. We show that EMG and kinematic data are inherently misaligned, and that reaction time is inconsistent throughout data collection. Both global and trial-by-trial re-alignment significantly improved offline performance for classification and regression. Our trial-by-trial re-alignment further improved offline classification performance relative to global realignment. However, online performance, with a human actively in the loop, was no different with or without re-alignment. This work highlights inaccuracies in labeled EMG data and has broad implications for EMG-control applications.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Francesco Penna, Emilio Trigili, Lorenzo Amato, Huseyin Eken, Filippo Dell'Agnello, Francesco Lanotte, Emanuele Gruppioni, Nicola Vitiello, Simona Crea
{"title":"Decoding Upper-Limb Movement Intention Through Adaptive Dynamic Movement Primitives: A Proof-of-Concept Study with a Shoulder-Elbow Exoskeleton.","authors":"Michele Francesco Penna, Emilio Trigili, Lorenzo Amato, Huseyin Eken, Filippo Dell'Agnello, Francesco Lanotte, Emanuele Gruppioni, Nicola Vitiello, Simona Crea","doi":"10.1109/ICORR58425.2023.10304723","DOIUrl":"10.1109/ICORR58425.2023.10304723","url":null,"abstract":"<p><p>This work presents an intention decoding algorithm that can be used to control a 4 degrees-of-freedom shoulder-elbow exoskeleton in reaching tasks. The algorithm was designed to assist the movement of users with upper-limb impairments who can initiate the movement by themselves. It relies on the observation of the initial part of the user's movement through joint angle measures and aims to estimate in real-time the phase of the movement and predict the goal position of the hand in the reaching task. The algorithm is based on adaptive Dynamic Movement Primitives and Gaussian Mixture Models. The performance of the algorithm was verified in robot-assisted planar reaching movements performed by one healthy subject wearing the exoskeleton. Tests included movements of different amplitudes and orientations. Results showed that the algorithm could predict the hand's final position with an error lower than 5 cm after 0.25 s from the movement onset, and that the final position reached during the tests was on average less than 4 cm far from the target position. Finally, the effects of the assistance were observed in a reduction of the activation of the Biceps Brachii and of the time to execute the reaching tasks.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating Joint Kinematics and Muscles Forces During Robotic Rehabilitation to Detect and Counteract Reduced Ankle Mobility.","authors":"Kim K Peper, Elisabeth R Jensen, Sami Haddadin","doi":"10.1109/ICORR58425.2023.10304782","DOIUrl":"10.1109/ICORR58425.2023.10304782","url":null,"abstract":"<p><p>The paper presents a solution to detect active ankle joint movement while a patient undergoes therapy with a robotic lower limb rehabilitation device that neither restricts nor actively supports ankle dorsi- or plantarflexion. The presented method requires the addition of only two accelerometer sensors to the system as well as a musculoskeletal model of the lower limb. Using forward kinematics and inverse dynamics, it enables knee and ankle joint kinematic tracking in the sagittal plane and muscle force estimation. This is an extension of a previous work in which only hip joint tracking was possible and, thus, muscle force estimation was limited. The correlation results of the current validation study with 12 healthy subjects show high correlation (R=0.88±0.09) between the kinematics estimated with the proposed method and those calculated from a gold standard motion capture setup for all three joints (hip, knee, and ankle). The correlation results of the estimated m. tibialis anterior muscle force against electromyography measurements (R = 0.62±0.27) are promising and a first application to a patient data set shows potential for future clinical application.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plugging Energy Regeneration Improves Braking Torque at Low Speed Instead of Dynamic Energy Regeneration.","authors":"Jiaju Zhang, Xiuhua Liu, Yangang Feng","doi":"10.1109/ICORR58425.2023.10304756","DOIUrl":"10.1109/ICORR58425.2023.10304756","url":null,"abstract":"<p><p>Previously, we proposed a dynamic energy regeneration used in robotic prostheses. However, a dynamic energy regeneration cannot provide enough torque at low speeds and for a robotic prostheses, low torque may result in falling down in some cases. In this study, we proposed a plugging electrical energy regeneration instead of dynamic electrical energy regeneration, which can provide relatively larger torque at low speeds. Firstly, the mathematical model and formula of a dynamic energy regeneration and a plugging energy regeneration were given. Theoretically, for a plugging energy regeneration, due to the current drain from the power supply, the braking current is larger than the current for a dynamic energy regeneration, at the same low speed, indicating more braking torque. Further, we designed a drive circuit of energy regeneration, to verify two methods of a dynamic energy regeneration and a plugging energy regeneration. Experiment results showed that at low speeds, the braking torque is larger using a plugging energy regeneration than the torque using a dynamic energy regeneration, in accordance with the results from the mathematical model. From the mathematical model and physical experiments, this study showed the potential of a plugging energy regeneration used in a robotic prosthesis, to deal with the weak braking torque at low speeds.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Ballen-Moreno, Kevin Langlois, Pasquale Ferrentino, Joost Brancart, Christopher Van Vlerken, Bram Vanderborght, Nico Buls, Tom Verstraten
{"title":"Robotically Aided Method to Characterise the Soft Tissue Interaction with Wearable Robots.","authors":"Felipe Ballen-Moreno, Kevin Langlois, Pasquale Ferrentino, Joost Brancart, Christopher Van Vlerken, Bram Vanderborght, Nico Buls, Tom Verstraten","doi":"10.1109/ICORR58425.2023.10304757","DOIUrl":"10.1109/ICORR58425.2023.10304757","url":null,"abstract":"<p><p>Wearable robots are widely used to enhance, support or assist humans in different tasks. To accomplish this scope, the interaction between the human body and the device should be comfortable, smooth, high-efficient to transfer forces, and safe for the user. Nevertheless, the pressure and shear stress related to these goals have been overlooked or partially analysed. In this sense, it is crucial to understand the soft tissue response through the in-vivo characterisation of multiple areas of the human body. In fact, soft tissue characterisation plays an essential role in calculating the pressure distribution and shear stress. However, current approaches to estimating soft tissue properties are unsuitable for deployment with multiple human body areas. Hence, this work presents a novel methodology to ease the characterisation of soft tissues using a robotic arm and a 3D superficial scanner. First, the robotic arm is validated by comparing the tensile and compression tests to the indentation tests done by the robot, estimating a 10,4% error. The preliminary experimental tests present the hyperelastic model which fit two adjacent zones of the forearm. This analysis can be extended in several ways, such as: calculating the shear stress, the energy losses or deformations caused by the interaction, and investigating the pressure distribution of different types of physical interfaces.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Basla, Lauren Chee, Giacomo Valle, Andrea Crema, Silvestro Micera, Robert Riener, Stanisa Raspopovic
{"title":"Sensory-Motor Neurostimulation to Enhance Exosuit Performance.","authors":"Chiara Basla, Lauren Chee, Giacomo Valle, Andrea Crema, Silvestro Micera, Robert Riener, Stanisa Raspopovic","doi":"10.1109/ICORR58425.2023.10304701","DOIUrl":"10.1109/ICORR58425.2023.10304701","url":null,"abstract":"<p><p>Exosuits typically provide limited mechanical support and rely on a user's residual functional ability. However, people with neurological impairments often suffer from both motor and sensory deficits that limit the assistance an exosuit can provide. To overcome these limitations, we developed the REINFORCE system, that complements the mechanical assistance provided by an exosuit, the Myosuit, with (1) functional electrical stimulation to enhance the activities of leg muscles, and (2) transcutaneous electrical nerve stimulation to restore somatosensory information. It consists of a fully portable and highly modular system that can be easily adapted to the level of impairment and specific need of each participant. Technical verification with three healthy participants showed reliable synchronization between all modules of the systems in all phases of walking. Additionally, we tested the system's effectiveness in one participant with multiple sclerosis who walked overground with and without functional electrical stimulation. Results showed a slight increase in self-selected walking speed (approx. 18%) and in the peak hip flexion at late swing (approx. 12%) as well as reduced step-to-step variability of step length and step time when electrical stimulation was provided. Our findings push towards a clinical trial involving more patients to validate the effectiveness of the REINFORCE system on participants' mobility.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}