V. Hutsaylyuk, M. Wachowski, B. Kovalyuk, Vitalii Mocharskyi, Oksana Sitkar, L. Śnieżek, J. Zygmuntowicz
{"title":"Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment","authors":"V. Hutsaylyuk, M. Wachowski, B. Kovalyuk, Vitalii Mocharskyi, Oksana Sitkar, L. Śnieżek, J. Zygmuntowicz","doi":"10.2478/adms-2023-0022","DOIUrl":"https://doi.org/10.2478/adms-2023-0022","url":null,"abstract":"Abstract In the presented work the impact of a laser shock wave on the mechanical properties of a Titanium Grade 1 was investigated. Based on a series of experimental studies related to the impact of the laser shock wave on the tested material, the impact of the given treatment on the structure and mechanical properties was assessed. The influence of the environment on the distribution of plasma temperature and pressure in the material during the implementation of the laser shock wave was analyzed. The effect of the laser treatment on the structure and micromechanical properties was initially estimated on the basis of the analysis of experimental results in the form of static strength test of samples after laser treatment. A slight increase in material strength was detected with a minimal decrease in ductility. In order to comprehensively understand the observed phenomenon, a number of fractographic tests were performed, especially the analysis of the porosity of the fracture surfaces. A decrease in the porosity of the material after impact laser treatment was observed as a result of local plastic deformation.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139012850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel","authors":"D. Kemény, Bence Sándor, B. Varbai, L. Katula","doi":"10.2478/adms-2023-0023","DOIUrl":"https://doi.org/10.2478/adms-2023-0023","url":null,"abstract":"Abstract Duplex stainless steels (DSSs) are widely used due to their corrosion resistance. Austenite and ferrite determine the excellent properties. Ferrite provides strength and good corrosion resistance, while austenite provides toughness and weldability. During our research, samples were produced with ER 2209 duplex steel wire using wire arc additive manufacturing (WAAM). Two different 17 V and 19 V arc voltages were used during the production. Two shielding gases were used for each voltage: M12-ArC-2.5 and M12-ArHeC-20/2. The research aimed to determine the ferrite ratio as a function of the welding parameters. The ferrite (or austenite) content must be between 30% and 70% for duplex stainless steel welds, according to the ISO 17781 standard. Based on our research, it can be stated that the austenite ratio increases as the voltage increases, thus failing to fulfill the standard's requirements. The helium content reduced the ferrite ratio even when the 17 V voltage was used due to the gas's higher ionization potential. During the metallographic examination, our welded samples met the standard requirements for the austenite content for 17 V arc voltage and M12-ArC-2.5 shielding gas. The ferrite content in the entire sample cross-section fell between 30-42% during feritscope and image analysis measurements. These welding parameters can be recommended for industrial applications.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amar Mezidi, Salem Merabti, Smain Benyamina, Mustapha Sadouki
{"title":"Effect of Substituting White Cement with Ceramic Waste Powders (CWP) on the Performance of a Mortar Based on Crushed Sand","authors":"Amar Mezidi, Salem Merabti, Smain Benyamina, Mustapha Sadouki","doi":"10.2478/adms-2023-0026","DOIUrl":"https://doi.org/10.2478/adms-2023-0026","url":null,"abstract":"Abstract The enormous quantities of ceramic waste lead us to its use in the construction field to solve both an environmental and an economic problem. The present study aims to recycle ceramic waste powders (CWP) to produce mortars. To this end, five crushed sand (CS) based mortar mixes with prismatic dimensions of 4x4x16 cm³ were prepared by partially replacing 0, 5, 10, 15, and 20% white cement with CWP. Tests were carried out to assess bulk density, compressive strength, and ultrasonic pulse velocity (UPV). The results obtained showed that increasing the proportion of ceramic waste powder (CWP) in mortar mixes led to a decrease in bulk density, compressive strength, and UPV in the different mortars. In addition, linear correlations were observed between the different variables studied.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze","authors":"S. Gopi, D. Mohan, E. Natarajan","doi":"10.2478/adms-2023-0024","DOIUrl":"https://doi.org/10.2478/adms-2023-0024","url":null,"abstract":"Abstract This study investigated the mechanical and corrosion properties of Friction Stir Welded (FSW) and Tungsten Inert Gas (TIG) welded phosphor bronze (CuSn4) joints. Corrosion tests were conducted on the welded joints, and the percentage of weight loss due to corrosion was measured at different time intervals. Results revealed that the percentage of weight loss due to corrosion of the TIG joint increased with time, whereas the percentage of weight loss due to corrosion of the FSW welded joint remained constant. This could be attributed to recrystallisation that happened in the solid-state welding, which reduced corrosion in the FSW welded joint. In addition, tensile tests were conducted to evaluate the strength of the joints. FSW with a spindle speed of 1300 rpm, weld speed of 0.06mm/sec, plunge depth of 0.25mm, pin profile of pentagon, and flat shoulder profile was found to produce good results. TIG welding with a welding speed of 1.75mm/sec, a gas flow rate of 7.5 cm3/min and an amperage of 120A also produced good results. The tensile strength of FSW was found to be approximately 1.6 times higher than that of TIG welding.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector","authors":"Ayesha Kausar, Ishaq Ahmad","doi":"10.2478/adms-2023-0025","DOIUrl":"https://doi.org/10.2478/adms-2023-0025","url":null,"abstract":"Abstract Carbonaceous or nanocarbon nano-reinforcement nanocomposites have been found as emergent candidates for aerospace industry. Consequently, the multifunctional nanocomposites have been fabricated using marvelous nanocarbon nanostructures like graphene, carbon nanotube, fullerene, carbon black, etc. Manufacturing techniques have also been engrossed for the formation of high performance engineering nanocomposites having fine strength, heat stability, flame resistance, and other space desired features. These practices include solution, in situ, and melt procedures, on top of specific space structural design techniques, for the formation of aerospace structures. The aerospace related material property enhancements using various carbonaceous nano-reinforcements depends upon the type of nanocarbon, dimensionality, as well as inherent features of these nanostructures (in addition to the choice of manufacturing methods). Furthermore, carbon nano-reinforcements have been filled, besides carbon fibers, in the epoxy matrices. Nanocarbon coated carbon fibers have been filled in epoxy resins to form the high performance nanomaterials for space structures. The engineering features of these materials have been experiential appropriate for the aerospace structures. Further research on these nanomaterials may be a key towards future opportunities in the aero systems. Additionally, the explorations on structure-property relationships of the carbonaceous nanocomposites have been found indispensable for the development of advanced aerospace structures.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead","authors":"A. Rosiak, T. Santos, D. R. Alba, Lirio Schaeffer","doi":"10.2478/adms-2023-0021","DOIUrl":"https://doi.org/10.2478/adms-2023-0021","url":null,"abstract":"Abstract The automobile sector has been making increasing efforts to reduce the weight of automobiles, aiming at mitigating pollutant gas emissions. The use of innovative concepts, such as bimetallic components, has become attractive because it makes it possible to increase the strength-to-weight ratio of the components. In this study, the hot forging of a bimetallic crosshead is investigated. In the process, a billet with a cylindrical core of the magnesium alloy AZ61 is enclosed with a hollow cylinder of the aluminum alloy AA 6351 and forged at 400°C. The objective is to reconcile the low density of Mg alloys with the high corrosion resistance of Al alloys. In parallel, a finite element analysis of the process was carried out.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grzegorz Węgrzyk, D. Grzęda, Milena Leszczyńska, M. Gloc, J. Ryszkowska
{"title":"Influence of the Microcrystalline Cellulose Dispersion Method on the Structure and Properties of Rigid Polyurethane Foam Composites","authors":"Grzegorz Węgrzyk, D. Grzęda, Milena Leszczyńska, M. Gloc, J. Ryszkowska","doi":"10.2478/adms-2023-0019","DOIUrl":"https://doi.org/10.2478/adms-2023-0019","url":null,"abstract":"Abstract This paper investigates the reinforcement of rigid polyurethane foams with microcrystalline cellulose to improve their mechanical and thermal properties. In this work, microcrystalline cellulose was added to polyol and was dispersed using two methods: calendering and ultrasounds. As a result of the study, it was found that the addition of micro cellulose to the polyol mixture used for the synthesis of polyurethane foam changes the properties of the final product. A crucial aspect is how it is added to the mixture. When adding microcrystalline cellulose particles, better results were obtained for particles dispersed using ultrasound. The most beneficial changes were obtained for the sample with 2php cellulose. The most significant reduction in average pore size was shown, which has a beneficial effect on the insulating properties of polyurethane foam. In addition, an increase in mechanical properties was also noted. Both properties are highly desirable in many applications.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eco Friendly Synthesis of Silver Oxide Nanoparticles from Borassus Flabellifer Fiber and Its Antibacterial Activity Against Representative Micro Organisms","authors":"R. Vanitha, C. Kavitha, S. Ananda Kumar","doi":"10.2478/adms-2023-0020","DOIUrl":"https://doi.org/10.2478/adms-2023-0020","url":null,"abstract":"Abstract The present study reports an easy eco-friendly, cost efficient, and rapid method for the synthesis of silver nanoparticles (Ag NPs) using palm sprouts as reducing cum capping agent. Green synthesis of silver nanoparticles was successfully performed using palm sprouts plant extract via a simple and cheaper eco-friendly method. Palm sprouts extract reduces silver nitrate to silver nanoparticles. The resulting materials were analyzed by Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) analysis. FT-IR spectrum confirms the presence of various functional groups in the active biomolecules, it acts as a capping agent for the nanoparticles. The morphology of this sample was analyzed through SEM and the presence of silver was confirmed accordingly. The green synthesized Ag NPs exhibited an excellent antibacterial activity against E. coli and P. aeruginosa and B. subtilis and S. aureus besides imparting efficient antimicrobial activity against pathogenic bacteria as well.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brige Dublin Boussa Elenga, L. Ahouet, Sylvain Ndinga Okina
{"title":"Evaluation of the Properties of Local Sands Used in a Cement Mortar and in the Formulation of a Standard Sand to Test the Class of Cements","authors":"Brige Dublin Boussa Elenga, L. Ahouet, Sylvain Ndinga Okina","doi":"10.11648/j.am.20231203.11","DOIUrl":"https://doi.org/10.11648/j.am.20231203.11","url":null,"abstract":"","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90018392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anouar Saidi, A. Yahya, A. Abouelregal, Husam E. Dargail, Ibrahim-Elkhalil Ahmed, Elsiddeg Ali, F. A. Mohammed
{"title":"Generalized Thermoelastic Heat Conduction Model Involving Three Different Fractional Operators","authors":"Anouar Saidi, A. Yahya, A. Abouelregal, Husam E. Dargail, Ibrahim-Elkhalil Ahmed, Elsiddeg Ali, F. A. Mohammed","doi":"10.2478/adms-2023-0009","DOIUrl":"https://doi.org/10.2478/adms-2023-0009","url":null,"abstract":"Abstract The purpose of this paper is to introduce a new time-fractional heat conduction model with three-phase-lags and three distinct fractional-order derivatives. We investigate the introduced model in the situation of an isotropic and homogeneous solid sphere. The exterior of the sphere is exposed to a thermal shock and a decaying heat generation rate. We recuperate some earlier thermoelasticity models as particular cases from the proposed model. Moreover, the effects of different fractional thermoelastic models and the effect of instant time on the physical variables of the medium are studied. We obtain the numerical solutions for the various physical fields using a numerical Laplace inversion technique. We represent the obtained results graphically and discuss them. Physical views presented in this article may be useful for the design of new materials, bio-heat transfer mechanisms between tissues and other scientific domains.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78856355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}