Frank Tambornino, Sven Ringelband, Stewart F Parker, Christopher M Howard, Dominic Fortes
{"title":"A comprehensive characterization of thiophosgene in the solid state.","authors":"Frank Tambornino, Sven Ringelband, Stewart F Parker, Christopher M Howard, Dominic Fortes","doi":"10.1107/S2052520624007583","DOIUrl":"10.1107/S2052520624007583","url":null,"abstract":"<p><p>Thiophosgene is one of the principal C=S building blocks in synthetic chemistry. At room temperature, thiophosgene is a red liquid. While its properties in the liquid and gaseous states are well known, a comprehensive characterization of thiophosgene in its solid state is presented here. Differential scanning calorimetry shows that thiophosgene forms a supercooled melt before rapidly crystallizing. Its melting point is 231.85 K (-41.3 °C). At 80 K, thiophosgene crystallizes in space group P6<sub>3</sub>/m [No. 174, a = b = 5.9645 (2), c = 6.2835 (3) Å, V = 193.59 (2) Å<sup>3</sup>]. The molecule shows a distinct rotational disorder: all S and Cl positions are of mixed occupancy and the disorder does not resolve at temperatures as low as 10 K, as was shown by neutron powder diffraction. Infrared, Raman and inelastic neutron scattering spectra were collected and assigned with the aid of quantum chemical calculations. A larger ordered structural model allowed for better agreement between the measured and calculated spectra, further indicating that disorder is an inherent feature of solid-state thiophosgene.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"495-503"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic space groups versus representation analysis in the investigation of magnetic structures: the happy end of a strained relationship.","authors":"J Rodriguez-Carvajal, J M Perez-Mato","doi":"10.1107/S2052520624007479","DOIUrl":"10.1107/S2052520624007479","url":null,"abstract":"<p><p>In recent decades, sustained theoretical and software developments have clearly established that representation analysis and magnetic symmetry groups are complementary concepts that should be used together in the investigation and description of magnetic structures. Historically, they were considered alternative approaches, but currently, magnetic space groups and magnetic superspace groups can be routinely used together with representation analysis, aided by state-of-the-art software tools. After exploring the historical antagonism between these two approaches, we emphasize the significant advancements made in understanding and formally describing magnetic structures by embracing their combined use.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"370-376"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the magnetic and crystal structures of NiO and MnO.","authors":"V Pomjakushin","doi":"10.1107/S205252062400756X","DOIUrl":"10.1107/S205252062400756X","url":null,"abstract":"<p><p>The magnetic and crystal structures of manganese and nickel monoxides have been studied using high-resolution neutron diffraction. The known 1k-structures based on the single propagation vector [½ ½ ½] for the parent paramagnetic space group Fm3m are forced to have monoclinic magnetic symmetry and are not possible in rhombohedral symmetry. However, the monoclinic distortions from the rhombohedral crystal metric allowed by symmetry are very small, and the explicit monoclinic splittings of the diffraction peaks have not been experimentally observed. We analyse the magnetic crystallographic models metrically compatible with our experimental data in full detail by using isotropy subgroup representation approach, including rhombohedral solutions based on the propagation vector star {[½ ½ ½], [-½ ½ ½], [½-½ ½], [½ ½ -½]}. Although the full star rhombohedral R<sub>I</sub>3c structure can equally well fit our diffraction data for NiO, we conclude that the best solution for the crystal and magnetic structures for NiO and MnO is the 1k monoclinic model with the magnetic space group C<sub>c</sub>2/c (Belov-Neronova-Smirnova No. 15.90, UNI symbol C2/c.1'<sub>c</sub>[C2/m]).</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"385-392"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y Nambu, M Kawamata, X Pang, H Murakawa, M Avdeev, H Kimura, H Masuda, N Hanasaki, Y Onose
{"title":"Magnetic structure of the noncentrosymmetric magnet Sr<sub>2</sub>MnSi<sub>2</sub>O<sub>7</sub> through irreducible representation and magnetic space group analyses.","authors":"Y Nambu, M Kawamata, X Pang, H Murakawa, M Avdeev, H Kimura, H Masuda, N Hanasaki, Y Onose","doi":"10.1107/S2052520624007625","DOIUrl":"10.1107/S2052520624007625","url":null,"abstract":"<p><p>Magnetic structures of the noncentrosymmetric magnet Sr<sub>2</sub>MnSi<sub>2</sub>O<sub>7</sub> were examined through neutron diffraction for powder and single-crystalline samples, as well as magnetometry measurements. All allowed magnetic structures for space group P42<sub>1</sub>m with the magnetic wavevector q<sub>m</sub> = (0, 0, ½) were refined via irreducible representation and magnetic space group analyses. The compound was refined to have in-plane magnetic moments within the magnetic space group Cmc2<sub>1</sub>.1'<sub>c</sub> (No. 36.177) under zero field, which can be altered to P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>.1'<sub>c</sub> (No. 19.28) above μ<sub>0</sub>H = 0.067 (5) T to align induced weak-ferromagnetic components within one layer on the ab plane. All refined parameters are provided following the recent framework based upon the magnetic space group, which better conveys when exchanging crystallographic information for commensurate magnetic structures.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"393-400"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stuart Calder, Raju Baral, C Charlotte Buchanan, Dustin A Gilbert, Rylan J Terry, Joseph W Kolis, Liurukara D Sanjeewa
{"title":"Low-dimensional metal-organic frameworks: a pathway to design, explore and tune magnetic structures.","authors":"Stuart Calder, Raju Baral, C Charlotte Buchanan, Dustin A Gilbert, Rylan J Terry, Joseph W Kolis, Liurukara D Sanjeewa","doi":"10.1107/S2052520624008023","DOIUrl":"https://doi.org/10.1107/S2052520624008023","url":null,"abstract":"<p><p>The magnetic structure adopted by a material relies on symmetry, the hierarchy of exchange interactions between magnetic ions and local anisotropy. A direct pathway to control the magnetic interactions is to enforce dimensionality within the material, from zero-dimensional isolated magnetic ions, one-dimensional (1D) spin-chains, two-dimensional (2D) layers to three-dimensional (3D) order. Being able to design a material with a specific dimensionality for the phenomena of interest is non-trivial. While many advances have been made in the area of inorganic magnetic materials, organic compounds offer distinct and potentially more fertile ground for material design. In particular magnetic metal-organic frameworks (mMOFs) combine magnetism with non-magnetic property functionality on the organic linkers within the structural framework, which can further be tuned with mild perturbations of pressure and field to induce phase transitions. Here, it is examined how neutron scattering measurements on mMOFs can be used to directly determine the magnetic structure when the magnetic ions are in a 2D layered environment within the wider 3D crystalline framework. The hydrated formate, in deuterated form, Co(DCOO)<sub>2</sub>·2D<sub>2</sub>O, which was one of the first magnetic MOFs to be investigated with neutron diffraction, is reinvestigated as an exemplar case.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":"80 Pt 5","pages":"430-442"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of magnetic structures in JANA2020.","authors":"M S Henriques, V Petříček, S Goswami, M Dušek","doi":"10.1107/S2052520624008163","DOIUrl":"10.1107/S2052520624008163","url":null,"abstract":"<p><p>JANA2020 is a program developed for the solution and refinement of regular, twinned, modulated, and composite crystal structures. In addition, JANA2020 also includes a magnetic option for solving magnetic structures from powder and single-crystal neutron diffraction data. This tool uses magnetic space and superspace symmetry to describe commensurate and incommensurate magnetic structures. The basics of the underlying formulation of magnetic structure factors and the use of magnetic symmetry for handling modulated and non-modulated magnetic structures are presented here, together with the general features of the magnetic tool. Examples of structures solved in the magnetic option of JANA2020 are given to illustrate the operation and capabilities of the program.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"409-423"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Search for missing symmetry in the Inorganic Crystal Structure Database (ICSD).","authors":"Maxim Avdeev","doi":"10.1107/S2052520624008229","DOIUrl":"10.1107/S2052520624008229","url":null,"abstract":"<p><p>An exhaustive search for missing symmetry was performed for 223 076 entries in the ICSD (2023-2 release). Approximately 0.65% of them can be described with higher symmetry than reported. Out of the identified noncentrosymmetric entries, ∼74% can be described by centrosymmetric space groups; this has implications for compatible physical properties. It is proposed that the information on the correct space group is included in the ICSD.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"451-455"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emilie Skytte Vosegaard, Mohammad Aref Hasen Mamakhel, Vijay Singh Parmar, Andreas Dueholm Bertelsen, Bo Brummerstedt Iversen
{"title":"Synthesis and characterization of an organic-inorganic hybrid crystal: 2[Co(en)<sub>3</sub>](V<sub>4</sub>O<sub>13</sub>)·4H<sub>2</sub>O.","authors":"Emilie Skytte Vosegaard, Mohammad Aref Hasen Mamakhel, Vijay Singh Parmar, Andreas Dueholm Bertelsen, Bo Brummerstedt Iversen","doi":"10.1107/S2052520624007509","DOIUrl":"10.1107/S2052520624007509","url":null,"abstract":"<p><p>Organic-inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt-vanadium-containing compound, 2[Co(en)<sub>3</sub>]<sup>3+</sup>(V<sub>4</sub>O<sub>13</sub>)<sup>6-</sup>·4H<sub>2</sub>O (1) is presented. The crystal structure of 1, consisting of [Co(en)<sub>3</sub>]<sup>3+</sup> complexes and chains of corner-sharing (VO<sub>4</sub>) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10<sup>-6</sup> K<sup>-1</sup>. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor Co<sup>II</sup> impurities (<1%) on the Co<sup>III</sup> site.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"488-494"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B J Campbell, H T Stokes, J M Perez-Mato, J Rodriguez-Carvajal
{"title":"A recapitulation of magnetic space groups and their UNI symbols.","authors":"B J Campbell, H T Stokes, J M Perez-Mato, J Rodriguez-Carvajal","doi":"10.1107/S2052520624008084","DOIUrl":"10.1107/S2052520624008084","url":null,"abstract":"<p><p>The mathematical structure, description and classification of magnetic space groups is briefly reviewed, with special emphasis on the recently proposed notation, the so-called UNI symbols [Campbell et al. (2022). Acta Cryst. A78, 99-106]. As illustrative examples, very simple magnetic space groups from each of the four possible types are described in detail.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"401-408"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining magnetic structures in GSAS-II using the Bilbao Crystallographic Server tool k-SUBGROUPSMAG.","authors":"Robert B Von Dreele, Luis Elcoro","doi":"10.1107/S2052520624008436","DOIUrl":"10.1107/S2052520624008436","url":null,"abstract":"<p><p>The embedded call to a special version of the web-based Bilbao Crystallographic Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all possible commensurate magnetic subgroups of a parent magnetic grey group is described. It facilitates the selection and refinement of the best commensurate magnetic structure model by having all the analysis tools including Rietveld refinement in one place as part of GSAS-II. It also provides the chosen magnetic space group as one of the 1421 possible standard Belov-Neronova-Smirnova forms or equivalent non-standard versions.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":"424-429"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}