{"title":"Evaluating cognitive performance using virtual reality gamified exercises","authors":"Davide Borghetti, Carlotta Zanobini, Ilenia Natola, Saverio Ottino, Angela Parenti, Victòria Brugada-Ramentol, Hossein Jalali, Amir Bozorgzadeh","doi":"10.3389/frvir.2023.1153145","DOIUrl":"https://doi.org/10.3389/frvir.2023.1153145","url":null,"abstract":"Virtual Reality (VR) environments have been proven useful in memory assessment and have shown to be more sensitive than pen-and-paper in prospective memory assessment. Moreover, these techniques provide the advantage of offering neuropsychological evaluations in a controlled, ecologically valid, and safe manner. In the present study, we used Enhance VR, a cognitive training and assessment tool in virtual reality. User performance was evaluated by means of the in-game scoring system. The primary goal of this study was to compare Enhance VR in-game scoring to already existing validated cognitive assessment tests. As a secondary goal, we tested the tolerance and usability of the system. 41 older adults took part in the study (mean age = 62.8 years). Each participant was evaluated with a predefined set of traditional pen-and-paper cognitive assessment tools and played four VR games. We failed to find a significant positive impact in explaining the variability of the Enhance VR game scores by the traditional pen-and-paper methodologies that addressed the same cognitive ability. This lack of effect may be related to the gamified environment of Enhance VR, where the players are awarded or subtracted points depending on their game performance, thus deviating from the scoring system used in traditional methodologies. Moreover, while the games were inspired by traditional assessment methodologies, presenting them in a VR environment might modify the processing of the information provided to the participant. The hardware and Enhance VR games were extremely well tolerated, intuitive, and within the reach of even those with no experience.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"220 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the perceptual attribution of a virtual robotic limb synchronizing with hand and foot simultaneously","authors":"Kuniharu Sakurada, Ryota Kondo, Fumihiko Nakamura, Michiteru Kitazaki, Maki Sugimoto","doi":"10.3389/frvir.2023.1210303","DOIUrl":"https://doi.org/10.3389/frvir.2023.1210303","url":null,"abstract":"Introduction: Incorporating an additional limb that synchronizes with multiple body parts enables the user to achieve high task accuracy and smooth movement. In this case, the visual appearance of the wearable robotic limb contributes to the sense of embodiment. Additionally, the user’s motor function changes as a result of this embodiment. However, it remains unclear how users perceive the attribution of the wearable robotic limb within the context of multiple body parts (perceptual attribution), and the impact of visual similarity in this context remains unknown. Methods: This study investigated the perceptual attribution of a virtual robotic limb by examining proprioceptive drift and the bias of visual similarity under the conditions of single body part (synchronizing with hand or foot motion only) and multiple body parts (synchronizing with average motion of hand and foot). Participants in the conducted experiment engaged in a point-to-point task using a virtual robotic limb that synchronizes with their hand and foot motions simultaneously. Furthermore, the visual appearance of the end-effector was altered to explore the influence of visual similarity. Results: The experiment revealed that only the participants’ proprioception of their foot aligned with the virtual robotic limb, while the frequency of error correction during the point-to-point task did not change across conditions. Conversely, subjective illusions of embodiment occurred for both the hand and foot. In this case, the visual appearance of the robotic limbs contributed to the correlations between hand and foot proprioceptive drift and subjective embodiment illusion, respectively. Discussion: These results suggest that proprioception is specifically attributed to the foot through motion synchronization, whereas subjective perceptions are attributed to both the hand and foot.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"215 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visual–vestibular sensory integration during congruent and incongruent self-rotation percepts using caloric vestibular stimulation","authors":"Ramy Kirollos, Chris M. Herdman","doi":"10.3389/frvir.2023.1253155","DOIUrl":"https://doi.org/10.3389/frvir.2023.1253155","url":null,"abstract":"Introduction: The present study sets out to determine which sensory system mostly influences self-motion perception when visual and vestibular cues are in conflict. We paired caloric vestibular stimulation that signaled motion in either the clockwise or counter-clockwise direction with a visual display that indicated self-rotation in either the same or opposite directions. Methods: In Experiment 1 (E1), caloric vestibular stimulation was used to produce vestibular circular vection. In Experiment 2 (E2), a virtual optokinetic drum was used to produce visual circular vection in a VR headset. Vection speed, direction, and duration were recorded using a potentiometer knob the participant controlled in E1 and E2. In Experiment 3 (E3), visual and vestibular stimuli were matched to be at approximately equal speeds across visual and vestibular modalities for each participant setting up Experiment 4 (E4). In E4, participants observed a moving visual pattern in a virtual reality (VR) headset while receiving caloric vestibular stimulation. Participants rotated the potentiometer knob while attending to visual–vestibular stimuli presentations to indicate their perceived circular vection. E4 had two conditions: 1) A congruent condition where calorics and visual display indicated circular vection in the same direction; 2) an incongruent condition where calorics and visual display indicated circular vection in opposite directions. Results and discussion: There were equal reports of knob rotation in the direction consistent with the visual and vestibular self-rotation direction in the incongruent condition of E4 across trials. There were no significant differences in knob rotation speed and duration in both conditions. These results demonstrate that the brain appears to weigh visual and vestibular cues equally during a visual–vestibular conflict of approximately equal speeds. These results are most consistent with the optimal cue integration hypothesis.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. M. Ali Mousavi, Wendy Powell, Max M. Louwerse, Andrew T. Hendrickson
{"title":"Behavior and self-efficacy modulate learning in virtual reality simulations for training: a structural equation modeling approach","authors":"S. M. Ali Mousavi, Wendy Powell, Max M. Louwerse, Andrew T. Hendrickson","doi":"10.3389/frvir.2023.1250823","DOIUrl":"https://doi.org/10.3389/frvir.2023.1250823","url":null,"abstract":"Introduction: There is a rising interest in using virtual reality (VR) applications in learning, yet different studies have reported different findings for their impact and effectiveness. The current paper addresses this heterogeneity in the results. Moreover, contrary to most studies, we use a VR application actually used in industry thereby addressing ecological validity of the findings. Methods and Results of Study1: In two studies, we explored the effects of an industrial VR safety training application on learning. In our first study, we examined both interactive VR and passive monitor viewing. Using univariate, comparative, and correlational analytical approaches, the study demonstrated a significant increase in self-efficacy and knowledge scores in interactive VR but showed no significant differences when compared to passive monitor viewing. Unlike passive monitor viewing, however, the VR condition showed a positive relation between learning gains and self-efficacy. Methods and Results of Study2: In our subsequent study, a Structural Equation Model (SEM) demonstrated that self-efficacy and users’ simulation performance predicted the learning gains in VR. We furthermore found that the VR hardware experience indirectly predicted learning gains through self-efficacy and user simulation performance factors. Conclusion/Discussion of both studies: Conclusively, the findings of these studies suggest the central role of self-efficacy to explain learning gains generalizes from academic VR tasks to those in use in industry training. In addition, these results point to VR behavioral markers that are indicative of learning.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"25 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A phenomenological approach to virtual reality in psychiatry education","authors":"Kamilla Pedersen, Peter Musaeus","doi":"10.3389/frvir.2023.1259263","DOIUrl":"https://doi.org/10.3389/frvir.2023.1259263","url":null,"abstract":"Virtual Reality has emerged as a valuable tool in medical education, primarily for teaching basic sciences and procedural skills. However, its potential in clinical psychiatry, particularly in comprehending the subjective experiences of individuals with mental illness, remains largely untapped. This paper aims to address this gap by proposing a phenomenological-driven approach to the design of virtual reality in psychiatry education. Insights into psychopathology, which involves the systematic study of abnormal experiences as well as self-awareness on behalf of the clinician, demands training. The clinician must develop sensitivity, observational skills, and an understanding of patients’ subjective experiences. While integrating the subjective perspective and promoting emotional self-awareness in psychiatry education have been recommended, further research is necessary to effectively harness virtual reality for this purpose. Drawing from the convergence of virtual reality, phenomenological approaches to grasping subjectivity and psychopathology, this paper aims to advance teachings in psychopathology. It underscores the importance of integrating biomedical knowledge with the lived experiences of psychiatric patients to offer learners a comprehensive understanding of clinical psychiatry. This approach is deeply rooted in the theories of three influential figures: Karl Jaspers, a German psychiatrist and philosopher, who emphasized the role of phenomenology in clinical psychiatry; Ludwig Binswanger, a Swiss psychiatrist and psychotherapist, known for his work on existential analysis; and Medard Boss, a Swiss psychiatrist and psychoanalyst, who introduced Daseinsanalysis, focusing on the individual’s existence in the world. To facilitate learning in acute psychiatry, a virtual reality scenario was developed. This scenario offers two perspectives: one from the patient’s viewpoint, simulating a severe psychotic incident, and the other from the perspective of junior doctors, exposing them to the challenges of communication, decision-making, and stress in a clinical setting. This paper argues that these phenomenological approaches are valuable in helping inform the didactical considerations in the design of the virtual reality scenario, enhancing the learning experience in psychiatry education. It highlights the potential of virtual reality to deepen understanding in the teaching of clinical psychiatry and provides practical insights into its application in an educational context.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135779794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Héloïse Baillet, Simone Burin-Chu, Laure Lejeune, Morgan Le Chénéchal, Régis Thouvarecq, Nicolas Benguigui, Pascale Leconte
{"title":"Impact of task constraints on a 3D visuomotor tracking task in virtual reality","authors":"Héloïse Baillet, Simone Burin-Chu, Laure Lejeune, Morgan Le Chénéchal, Régis Thouvarecq, Nicolas Benguigui, Pascale Leconte","doi":"10.3389/frvir.2023.1119238","DOIUrl":"https://doi.org/10.3389/frvir.2023.1119238","url":null,"abstract":"Objective: The aim of the present study was to evaluate the impact of different task constraints on the participants’ adaptation when performing a 3D visuomotor tracking task in a virtual environment. Methods: Twenty-three voluntary participants were tested with the HTC Vive Pro Eye VR headset in a task that consisted of tracking a virtual target moving in a cube with an effector controlled with the preferred hand. Participants had to perform 120 trials according to three task constraints (i.e., gain, size, and speed), each performed according to four randomized conditions. The target-effector distance and elbow range of movement were measured. Results: The results showed an increase in the distance to the target when the task constraints were the strongest. In addition, a change in movement kinematics was observed, involving an increase in elbow amplitude as task constraints increased. It also appeared that the depth dimension played a major role in task difficulty and elbow amplitude and coupling in the tracking task. Conclusion: This research is an essential step towards characterizing interactions with a 3D virtual environment and showing how virtual constraints can facilitate arm’s involvement in the depth dimension.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges of controlling the rotation of virtual objects with variable grip using force-feedback gloves","authors":"Michael Bonfert, Maiko Hübinger, Rainer Malaka","doi":"10.3389/frvir.2023.1190426","DOIUrl":"https://doi.org/10.3389/frvir.2023.1190426","url":null,"abstract":"Some virtual reality (VR) applications require true-to-life object manipulation, such as for training or teleoperation. We investigate an interaction technique that replicates the variable grip strength applied to a held object when using force-feedback gloves in VR. We map the exerted finger pressure to the rotational freedom of the virtual object. With a firm grip, the object’s orientation is fixed to the hand. With a loose grip, the user can allow the object to rotate freely within the hand. A user study ( N = 21) showed how challenging it was for participants to control the object’s rotation with our prototype employing the SenseGlove DK1. Despite high action fidelity, the grip variability led to poorer performance and increased task load compared to the default fixed rotation. We suspect low haptic fidelity as an explanation as only kinesthetic forces but no cutaneous cues are rendered. We discuss the system design limitations and how to overcome them in future haptic interfaces for physics-based multi-finger object manipulation.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135095109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Encouraging participant embodiment during VR-assisted public speaking training improves persuasiveness and charisma and reduces anxiety in secondary school students","authors":"Ïo Valls-Ratés, Oliver Niebuhr, Pilar Prieto","doi":"10.3389/frvir.2023.1074062","DOIUrl":"https://doi.org/10.3389/frvir.2023.1074062","url":null,"abstract":"Practicing public speaking to simulated audiences created in virtual reality environments is reported to be effective for reducing public speaking anxiety. However, little is known about whether this effect can be enhanced by encouraging the use of gestures during VR-assisted public speaking training. In the present study two groups of secondary schools underwent a three-session public speaking training program in which they delivered short speeches to VR-simulated audiences. One group was encouraged to “embody” their speeches through gesture while the other was given no instructions regarding the use of gesture. Before and after the training sessions participants underwent respectively a pre- and a post-training session, which consisted of delivering a similar short speech to a small live audience. At pre- and post-training sessions, participants’ levels of anxiety were self-assessed, their speech performances were rated for persuasiveness and charisma by independent raters, and their verbal output was analyzed for prosodic features and gesture rate. Results showed that both groups significantly reduced their self-assessed anxiety between the pre- and post-training sessions. Persuasiveness and charisma ratings increased for both groups, but to a significantly greater extent in the gesture-using group. However, the prosodic and gestural features analyzed showed no significant differences across groups or from pre-to post-training speeches. Thus, our results seem to indicate that encouraging the use of gesture in VR-assisted public speaking practice can help students be more charismatic and their delivery more persuasive before presenting in front of a live audience.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Belmir Jose De Jesus Junior, Léa Perreault, Marilia K. S. Lopes, Marie-Claude Roberge, Alcyr A. Oliveira, Tiago H. Falk
{"title":"Using multisensory virtual reality nature immersion as a therapeutic modality for improving HRV and cognitive functions in post-traumatic stress disorder: a pilot-study","authors":"Belmir Jose De Jesus Junior, Léa Perreault, Marilia K. S. Lopes, Marie-Claude Roberge, Alcyr A. Oliveira, Tiago H. Falk","doi":"10.3389/frvir.2023.1261093","DOIUrl":"https://doi.org/10.3389/frvir.2023.1261093","url":null,"abstract":"Introduction: Immersive virtual reality (VR) applications are burgeoning within healthcare as they promote high levels of engagement. Notwithstanding, existing solutions only stimulate two of our five senses (audio and visual), thus may not be optimal in the sense of promoting immersion and of “being present”. In this paper, we explore the benefits of an immersive multisensory experience as a therapeutic modality for participants suffering from post-traumatic stress disorder (PTSD). Methods: In addition to 360-degree videos and corresponding natural sounds, nature smells are also presented by means of a portable ION 2 scent diffusion device attached to an Oculus Quest 2 VR head-mounted display. A 3-week 12-sessions protocol was applied to a sample of 20 participants diagnosed with PTSD. Results and discussion: We report the outcomes seen from a battery of qualitative metrics, including cognitive functioning tests, psychological symptoms, severity of PTSD, and several self-reported questionnaires and heart rate variability (HRV) metrics. Results are compared not only between pre-and post intervention, but also after a 3-month follow-up period. Results suggest a decrease in the severity of PTSD, as well as improvements in processing speed and sustained attention post-intervention, but also sustained decrease in the severity of PTSD and in dissociative tendencies at the 3-month follow-up. Overall, participants rated the experience as highly immersive and produced very mild to no symptoms of cybersickness, thus corroborating the feasibility and usefulness of the proposed multisensory immersive VR tool for reducing PTSD symptoms.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"242 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135899400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria D. Chamizo, Pierre Bourdin, Magdalena Mendez-Lopez, Juan Jose Santamaria
{"title":"Editorial: From paper and pencil tasks to virtual reality interventions: improving spatial abilities in girls and women","authors":"Victoria D. Chamizo, Pierre Bourdin, Magdalena Mendez-Lopez, Juan Jose Santamaria","doi":"10.3389/frvir.2023.1286689","DOIUrl":"https://doi.org/10.3389/frvir.2023.1286689","url":null,"abstract":"","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139335335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}