{"title":"EmT: Locating empty territories of homology group generators in a dataset","authors":"Xin Xu, J. Cisewski-Kehe","doi":"10.3934/FODS.2019010","DOIUrl":"https://doi.org/10.3934/FODS.2019010","url":null,"abstract":"Persistent homology is a tool within topological data analysis to detect different dimensional holes in a dataset. The boundaries of the empty territories (i.e., holes) are not well-defined and each has multiple representations. The proposed method, Empty Territory (EmT), provides representations of different dimensional holes with a specified level of complexity of the territory boundary. EmT is designed for the setting where persistent homology uses a Vietoris-Rips complex filtration, and works as a post-analysis to refine the hole representation of the persistent homology algorithm. In particular, EmT uses alpha shapes to obtain a special class of representations that captures the empty territories with a complexity determined by the size of the alpha balls. With a fixed complexity, EmT returns the representation that contains the most points within the special class of representations. This method is limited to finding 1D holes in 2D data and 2D holes in 3D data, and is illustrated on simulation datasets of a homogeneous Poisson point process in 2D and a uniform sampling in 3D. Furthermore, the method is applied to a 2D cell tower location geography dataset and 3D Sloan Digital Sky Survey (SDSS) galaxy dataset, where it works well in capturing the empty territories.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42374169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Levels and trends in the sex ratio at birth and missing female births for 29 states and union territories in India 1990–2016: A Bayesian modeling study","authors":"Fengqing Chao, A. Yadav","doi":"10.3934/FODS.2019008","DOIUrl":"https://doi.org/10.3934/FODS.2019008","url":null,"abstract":"The sex ratio at birth (SRB) has risen in India and reaches well beyond the levels under normal circumstances since the 1970s. The lasting imbalanced SRB has resulted in much more males than females in India. A population with severely distorted sex ratio is more likely to have prolonged struggle for stability and sustainability. It is crucial to estimate SRB and its imbalance for India on state level and assess the uncertainty around estimates. We develop a Bayesian model to estimate SRB in India from 1990 to 2016 for 29 states and union territories. Our analyses are based on a comprehensive database on state-level SRB with data from the sample registration system, census and Demographic and Health Surveys. The SRB varies greatly across Indian states and union territories in 2016: ranging from 1.026 (95% uncertainty interval [0.971; 1.087]) in Mizoram to 1.181 [1.143; 1.128] in Haryana. We identify 18 states and union territories with imbalanced SRB during 1990–2016, resulting in 14.9 [13.2; 16.5] million of missing female births in India. Uttar Pradesh has the largest share of the missing female births among all states and union territories, taking up to 32.8% [29.5%; 36.3%] of the total number.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47172022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power weighted shortest paths for clustering Euclidean data","authors":"Daniel Mckenzie, S. Damelin","doi":"10.3934/fods.2019014","DOIUrl":"https://doi.org/10.3934/fods.2019014","url":null,"abstract":"We study the use of power weighted shortest path distance functions for clustering high dimensional Euclidean data, under the assumption that the data is drawn from a collection of disjoint low dimensional manifolds. We argue, theoretically and experimentally, that this leads to higher clustering accuracy. We also present a fast algorithm for computing these distances.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70247788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"General risk measures for robust machine learning","authors":"É. Chouzenoux, Henri G'erard, J. Pesquet","doi":"10.3934/fods.2019011","DOIUrl":"https://doi.org/10.3934/fods.2019011","url":null,"abstract":"A wide array of machine learning problems are formulated as the minimization of the expectation of a convex loss function on some parameter space. Since the probability distribution of the data of interest is usually unknown, it is is often estimated from training sets, which may lead to poor out-of-sample performance. In this work, we bring new insights in this problem by using the framework which has been developed in quantitative finance for risk measures. We show that the original min-max problem can be recast as a convex minimization problem under suitable assumptions. We discuss several important examples of robust formulations, in particular by defining ambiguity sets based on $varphi$-divergences and the Wasserstein metric.We also propose an efficient algorithm for solving the corresponding convex optimization problems involving complex convex constraints. Through simulation examples, we demonstrate that this algorithm scales well on real data sets.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43459497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation and uncertainty quantification for the output from quantum simulators","authors":"R. Bennink, A. Jasra, K. Law, P. Lougovski","doi":"10.3934/FODS.2019007","DOIUrl":"https://doi.org/10.3934/FODS.2019007","url":null,"abstract":"The problem of estimating certain distributions over {0, 1}d is considered here. The distribution represents a quantum system of d qubits, where there are non-trivial dependencies between the qubits. A maximum entropy approach is adopted to reconstruct the distribution from exact moments or observed empirical moments. The Robbins Monro algorithm is used to solve the intractable maximum entropy problem, by constructing an unbiased estimator of the un-normalized target with a sequential Monte Carlo sampler at each iteration. In the case of empirical moments, this coincides with a maximum likelihood estimator. A Bayesian formulation is also considered in order to quantify uncertainty a posteriori. Several approaches are proposed in order to tackle this challenging problem, based on recently developed methodologies. In particular, unbiased estimators of the gradient of the log posterior are constructed and used within a provably convergent Langevin-based Markov chain Monte Carlo method. The methods are illustrated on classically simulated output from quantum simulators.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42733584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximate bayesian inference for geostatistical generalised linear models","authors":"E. Evangelou","doi":"10.3934/FODS.2019002","DOIUrl":"https://doi.org/10.3934/FODS.2019002","url":null,"abstract":"The aim of this paper is to bring together recent developments in Bayesian generalised linear mixed models and geostatistics. We focus on approximate methods on both areas. A technique known as full-scale approximation, proposed by Sang and Huang (2012) for improving the computational drawbacks of large geostatistical data, is incorporated into the INLA methodology, used for approximate Bayesian inference. We also discuss how INLA can be used for approximating the posterior distribution of transformations of parameters, useful for practical applications. Issues regarding the choice of the parameters of the approximation such as the knots and taper range are also addressed. Emphasis is given in applications in the context of disease mapping by illustrating the methodology for modelling the loa loa prevalence in Cameroon and malaria in the Gambia.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44770194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorial Hodge theory for equitable kidney paired donation","authors":"Joshua L. Mike, V. Maroulas","doi":"10.3934/FODS.2019004","DOIUrl":"https://doi.org/10.3934/FODS.2019004","url":null,"abstract":"Kidney Paired Donation (KPD) is a system whereby incompatible patient-donor pairs (PD pairs) are entered into a pool to find compatible cyclic kidney exchanges where each pair gives and receives a kidney. The donation allocation decision problem for a KPD pool has traditionally been viewed within an economic theory and integer-programming framework. While previous allocation schema work well to donate the maximum number of kidneys at a specific time, certain subgroups of patients are rarely matched in such an exchange. Consequently, these methods lead to systematic inequity in the exchange, where many patients are rejected a kidney repeatedly. Our goal is to investigate inequity within the distribution of kidney allocation among patients, and to present an algorithm which minimizes allocation disparities. The method presented is inspired by cohomology and describes the cyclic structure in a kidney exchange efficiently; this structure is then used to search for an equitable kidney allocation. Another key result of our approach is a score function defined on PD pairs which measures cycle disparity within a KPD pool; i.e., this function measures the relative chance for each PD pair to take part in the kidney exchange if cycles are chosen uniformly. Specifically, we show that PD pairs with underdemanded donors or highly sensitized patients have lower scores than typical PD pairs. Furthermore, our results demonstrate that PD pair score and the chance to obtain a kidney are positively correlated when allocation is done by utility-optimal integer programming methods. In contrast, the chance to obtain a kidney through our method is independent of score, and thus unbiased in this regard.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44209556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects","authors":"Yaxian Xu, A. Jasra","doi":"10.3934/fods.2019003","DOIUrl":"https://doi.org/10.3934/fods.2019003","url":null,"abstract":"Multivariate stochastic volatility models are a popular and well-known class of models in the analysis of financial time series because of their abilities to capture the important stylized facts of financial returns data. We consider the problems of filtering distribution estimation and also marginal likelihood calculation for multivariate stochastic volatility models with cross-leverage effects in the high dimensional case, that is when the number of financial time series that we analyze simultaneously (denoted by begin{document}$ d $end{document} ) is large. The standard particle filter has been widely used in the literature to solve these intractable inference problems. It has excellent performance in low to moderate dimensions, but collapses in the high dimensional case. In this article, two new and advanced particle filters proposed in [ 4 ], named the space-time particle filter and the marginal space-time particle filter, are explored for these estimation problems. The better performance in both the accuracy and stability for the two advanced particle filters are shown using simulation and empirical studies in comparison with the standard particle filter. In addition, Bayesian static model parameter estimation problem is considered with the advances in particle Markov chain Monte Carlo methods. The particle marginal Metropolis-Hastings algorithm is applied together with the likelihood estimates from the space-time particle filter to infer the static model parameter successfully when that using the likelihood estimates from the standard particle filter fails.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43334711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral methods to study the robustness of residual neural networks with infinite layers","authors":"T. Trimborn, Stephan Gerster, G. Visconti","doi":"10.3934/fods.2020012","DOIUrl":"https://doi.org/10.3934/fods.2020012","url":null,"abstract":"Recently, neural networks (NN) with an infinite number of layers have been introduced. Especially for these very large NN the training procedure is very expensive. Hence, there is interest to study their robustness with respect to input data to avoid unnecessarily retraining the network. Typically, model-based statistical inference methods, e.g. Bayesian neural networks, are used to quantify uncertainties. Here, we consider a special class of residual neural networks and we study the case, when the number of layers can be arbitrarily large. Then, kinetic theory allows to interpret the network as a dynamical system, described by a partial differential equation. We study the robustness of the mean-field neural network with respect to perturbations in initial data by applying UQ approaches on the loss functions.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70247997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issues using logistic regression with class imbalance, with a case study from credit risk modelling","authors":"Yazhe Li, T. Bellotti, N. Adams","doi":"10.3934/fods.2019016","DOIUrl":"https://doi.org/10.3934/fods.2019016","url":null,"abstract":"The class imbalance problem arises in two-class classification problems, when the less frequent (minority) class is observed much less than the majority class. This characteristic is endemic in many problems such as modeling default or fraud detection. Recent work by Owen [ 19 ] has shown that, in a theoretical context related to infinite imbalance, logistic regression behaves in such a way that all data in the rare class can be replaced by their mean vector to achieve the same coefficient estimates. We build on Owen's results to show the phenomenon remains true for both weighted and penalized likelihood methods. Such results suggest that problems may occur if there is structure within the rare class that is not captured by the mean vector. We demonstrate this problem and suggest a relabelling solution based on clustering the minority class. In a simulation and a real mortgage dataset, we show that logistic regression is not able to provide the best out-of-sample predictive performance and that an approach that is able to model underlying structure in the minority class is often superior.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70247842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}