Environmental science. Advances最新文献

筛选
英文 中文
Carbon dots: a promising path towards environmental sustainability 碳点:实现环境可持续发展的希望之路
IF 3.5
Environmental science. Advances Pub Date : 2024-10-04 DOI: 10.1039/D4VA00273C
Ajith Manayil Parambil and Paulraj Rajamani
{"title":"Carbon dots: a promising path towards environmental sustainability","authors":"Ajith Manayil Parambil and Paulraj Rajamani","doi":"10.1039/D4VA00273C","DOIUrl":"https://doi.org/10.1039/D4VA00273C","url":null,"abstract":"<p >Carbon dots (CDs) have received a lot of interest in recent years because of their unique features and wide range of uses, especially in environmental research. Several reviews have already addressed different aspects of CDs, including production, optical characteristics, and applications in bioimaging and drug administration. However, there is a significant void in the research regarding CDs' full environmental potential, particularly in addressing environmental deterioration through monitoring and rehabilitation. This article separates itself by concentrating on the significance of co-formed molecules in modifying CD properties, as well as the importance of purifying methods for optimal environmental performance. Previous assessments have typically neglected how co-formed compounds during synthesis can have a significant impact on CD surface chemistry, solubility, and photoluminescence properties. This perspective delves into how tailoring the synthesis and purification of CDs can optimize them for environmental applications. The article then looks into the promising future of CDs for environmental monitoring and remediation. Their distinguishing characteristics make them appropriate for sensing applications such as fluorescence-based detection, colorimetric sensing, and electrochemical sensing. Furthermore, CDs have the potential to accelerate the breakdown of organic pollutants, hence increasing the effectiveness of environmental restoration efforts. Their vast surface area and variable surface chemistry enable the effective sorptive removal of organic and inorganic contaminants from water. Integrating CDs with membrane filtration systems improves pollutant removal efficiency. Then, we investigated the mechanisms behind the antibacterial properties of CDs. By extensively studying these issues, this paper intends to demonstrate the revolutionary potential of CDs in building a more ecologically friendly and sustainable future.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00273c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intensive aquaculture affects lake's trophic status and aquatic floral diversity† 集约化水产养殖影响湖泊的营养状况和水生花卉多样性†。
IF 3.5
Environmental science. Advances Pub Date : 2024-09-27 DOI: 10.1039/D4VA00038B
Divya Dubey, Kiran Toppo, Saroj Kumar and Venkatesh Dutta
{"title":"Intensive aquaculture affects lake's trophic status and aquatic floral diversity†","authors":"Divya Dubey, Kiran Toppo, Saroj Kumar and Venkatesh Dutta","doi":"10.1039/D4VA00038B","DOIUrl":"https://doi.org/10.1039/D4VA00038B","url":null,"abstract":"<p >This study aims to assess the impact of intensive aquaculture on a lake that has experienced significant anthropogenic impacts. Specifically, it investigates the consequences of aquaculture activities, such as <em>Trapa</em> cultivation (water chestnut) and fish rearing, on the lake's water quality, trophic state, and floristic diversity, with a primary emphasis on algae and macrophytes. Satellite imageries spanning the last five decades, from 1976 to 2022, were analyzed to understand the impact of urbanization and changes in land use and land cover within the lake's catchment. The study found that aquaculture activities negatively impacted algae and macrophytes' diversity, dominance, and community structure in the freshwater lake. The study reported a total of 61 algal species from five families during both sampling phases. Dominant species belonged to the Chlorophyceae and Euglenophyceae families, alongside several diatom species. Notably, the reported algal species served as bioindicators of organic pollution, as assessed by the algae pollution index. During the second year of sampling, intensive fish-rearing activities disrupted the macrophytic diversity, which was replaced by the proliferated growth of planktonic algae, resulting in the biotic shift of the lake's floristic diversity. The study provides valuable insights into the effective management of lakes impacted by intensive aquaculture, shedding light on the intricate relationships between aquaculture practices and the ecological dynamics of freshwater ecosystems in developing countries.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00038b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid anion exchanger with nanoscale zero valent iron for trace hexavalent chromium removal from drinking water† 利用纳米级零价铁的混合阴离子交换器去除饮用水中的痕量六价铬†。
IF 3.5
Environmental science. Advances Pub Date : 2024-09-27 DOI: 10.1039/D4VA00246F
Annabel L. Mungan, Elizabeth A. Hjelvik, Anthony P. Straub and Julie A. Korak
{"title":"A hybrid anion exchanger with nanoscale zero valent iron for trace hexavalent chromium removal from drinking water†","authors":"Annabel L. Mungan, Elizabeth A. Hjelvik, Anthony P. Straub and Julie A. Korak","doi":"10.1039/D4VA00246F","DOIUrl":"https://doi.org/10.1039/D4VA00246F","url":null,"abstract":"<p >Hexavalent chromium, Cr(<small>VI</small>), is a human carcinogen that occurs in groundwater worldwide. While not federally regulated in the USA, the State of California has approved a new Cr(<small>VI</small>) maximum contaminant level at 10 μg L<small><sup>−1</sup></small>, expected to go into effect fall 2024. This study synthesizes, characterizes, and verifies performance of a hybrid strong base anion exchanger with nanoscale zero valent iron (NZVI-resin) for trace Cr(<small>VI</small>) removal from drinking water. NZVI-resin was synthesized by exchanging tetrachloroferrate ion (FeCl<small><sub>4</sub></small><small><sup>−</sup></small>) onto the resin prior to sodium borohydride (NaBH<small><sub>4</sub></small>) reduction. The impact of important synthesis variables was identified, including reagent concentrations and molar ratios, solvent selection, temperature, and drying procedure. Material characterization techniques (<em>e.g.</em> SEM-EDS and XPS) determined NZVI presence and elemental distribution on the resin surface. Our work showed a 360% increase in treated water throughput using NZVI-resin compared to unmodified resin for trace Cr(<small>VI</small>) removal in column experiments. This work presents a broad assessment of the material characteristics of NZVI-resin, discusses the limitations of batch tests, and describes operational challenges for Cr(<small>VI</small>) treatment.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00246f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron complexation by biomass model compounds† 生物质模型化合物的铁络合作用†
IF 3.5
Environmental science. Advances Pub Date : 2024-09-25 DOI: 10.1039/D3VA00383C
Anurag S. Mandalika and Troy M. Runge
{"title":"Iron complexation by biomass model compounds†","authors":"Anurag S. Mandalika and Troy M. Runge","doi":"10.1039/D3VA00383C","DOIUrl":"https://doi.org/10.1039/D3VA00383C","url":null,"abstract":"<p >Iron chelating agents have important roles to play, both in human physiology and in the environment. In the latter case, persistence in the environment has given cause for concern in the case of synthetic iron chelating agents such as ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), which do not readily biodegrade. Due to their long lifespan in the environment synthetic iron chelators can also participate in mobilization reactions, particularly with radionuclides such as <small><sup>60</sup></small>Co. There is an eminent need to explore alternative iron chelating compounds, preferably, renewable in origin, to overcome the drawbacks of synthetic compounds, making plant biomass a potential source of iron chelating agents. Twelve biomass model compounds, representative of the biomass constituents, cellulose, hemicellulose, lignin and extractives (tannins), were tested for their iron complexation ability by measurement of the binding strengths with Fe(<small>II</small>) and Fe(<small>III</small>) in dimethylsulfoxide (DMSO), to ensure solubility, using spectrophotometric titration. The flavonols, kaempferol, quercetin and myricetin displayed the strongest binding affinity to Fe(<small>II</small>) and Fe(<small>III</small>) along with the greatest positive cooperativity as determined by the calculation of Hill coefficients. The lignin-representative compound, <em>p</em>-coumaric acid, showed the highest binding affinity to Fe(<small>II</small>) only. Carbohydrate model compounds did not show any evidence of binding to iron, despite some contrary evidence in literature about their ability to do so. This study points to the potential role that the flavonols class of compounds, and therefore by extension, plant tissues that are rich in extractives, may play in the exploration of biomass-derived iron chelants.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00383c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Household welfare improvement in the Mbulu district of Tanzania: does rural electrification matter? 坦桑尼亚姆布卢地区家庭福利的改善:农村电气化是否重要?
IF 3.5
Environmental science. Advances Pub Date : 2024-09-20 DOI: 10.1039/D4VA00259H
Hadija Matimbwa and Marco E. Mng'ong'o
{"title":"Household welfare improvement in the Mbulu district of Tanzania: does rural electrification matter?","authors":"Hadija Matimbwa and Marco E. Mng'ong'o","doi":"10.1039/D4VA00259H","DOIUrl":"https://doi.org/10.1039/D4VA00259H","url":null,"abstract":"<p >Access to electricity is crucial for basic human activities and serves as a direct measure of energy poverty. In recent years, intergovernmental organizations have made significant strides in rural electrification to ensure energy security for all (rural populations, the poor, and the vulnerable). In developing countries, there is a positive correlation between rural infrastructure enhancement and rural livelihoods. Since the early 2000s, in Tanzania, there has been a major government rural electrification initiative to boost rural development. However, the extent to which rural electrification improves rural livelihoods remains unclear. This study was conducted to investigate the impact of rural electrification on household livelihoods in Tanzania, using the Mbulu District as a case study. The study employed a mixed research approach, combining qualitative and quantitative methods. The data were collected from 447 respondents through surveys and interviews with households in electrified and non-electrified areas, where information such as income levels, health, education access, self-employment, and asset ownership was collected. The results indicated a significant 45% increase in household income following electrification compared to non-electrification. About 47% of the respondents earned over 1 000 000 Tsh per month post-electrification, compared to 6% before. Access to modern healthcare improved, with 36% of the respondents being able to afford medication after electrification compared to 13% before electrification. Furthermore, educational opportunities expanded where 31% of the children were enrolled in private schools after electrification compared to 11% before electrification. Asset ownership showed marked improvements, with fewer households living in mud houses (10% post-electrification, down from 22%); all this confirms the significant impact of rural electrification on the improvement of rural development and household livelihood. Our study concludes that rural electrification significantly boosts household income, health service provision, education, and overall welfare which have a significant impact on environmental management. It recommends continued investment and sustained efforts from stakeholders, including the Tanzania Electricity Supply Company (TANESCO) to address challenges hindering electricity service expansion in rural areas. This study provides a foundation for informed policy decisions and actionable strategies to promote sustainable development in rural communities.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00259h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laccase-mediated degradation of emerging contaminants: unveiling a sustainable solution 拉克酶介导的新污染物降解:揭示可持续的解决方案
IF 3.5
Environmental science. Advances Pub Date : 2024-09-09 DOI: 10.1039/D4VA00173G
Pooja Thathola, Elda M. Melchor-Martínez, Priyanka Adhikari, Saúl Antonio Hernández Martínez, Anita Pandey and Roberto Parra-Saldívar
{"title":"Laccase-mediated degradation of emerging contaminants: unveiling a sustainable solution","authors":"Pooja Thathola, Elda M. Melchor-Martínez, Priyanka Adhikari, Saúl Antonio Hernández Martínez, Anita Pandey and Roberto Parra-Saldívar","doi":"10.1039/D4VA00173G","DOIUrl":"10.1039/D4VA00173G","url":null,"abstract":"<p >The excessive use of emerging contaminants (ECs) in various applications has led to a global health crisis. ECs are found in groundwater, surface water, soils, and wastewater treatment plants at concentrations ranging from ng L<small><sup>−1</sup></small> to μg L<small><sup>−1</sup></small>. This review explores the sources of ECs and laccase's role in their degradation. ECs encompass diverse categories with potential implications for human health, animals, and the environment, and their adverse effects are examined. Laccase, a key mediator, can oxidize non-phenolic compounds, broadening its substrate range. The review discusses the intricacies of laccase-mediated degradation and highlights its potential to improve global water resource sustainability. Innovative strategies, like laccase immobilization, are explored for EC removal, benefiting environmental preservation. In summary, the review addresses the issue of excessive EC use, their presence in water sources, and their impact on health, wildlife, and the ecosystem. Laccase offers promise for EC degradation, emphasizing its mechanism and potential for sustainable water resource management. Advanced techniques, including laccase immobilization, further demonstrate the commitment to tackling EC-induced environmental challenges.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00173g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in visible light-driven micro/nanomotors for photodegradation of environmental pollutants 用于光降解环境污染物的可见光驱动微电机/纳米电机的研究进展
IF 3.5
Environmental science. Advances Pub Date : 2024-09-04 DOI: 10.1039/D4VA00230J
Vanessa R. Ferreira and Manuel Azenha
{"title":"Advancements in visible light-driven micro/nanomotors for photodegradation of environmental pollutants","authors":"Vanessa R. Ferreira and Manuel Azenha","doi":"10.1039/D4VA00230J","DOIUrl":"10.1039/D4VA00230J","url":null,"abstract":"<p >Visible light-driven motors (Vis-LDMs) have shown significant potential for water decontamination processes through the synergistic interaction between their active movement and photocatalytic properties, enabling more efficient degradation of organic pollutants. This review highlights recent advances in Vis-LDMs photocatalysts for sustainable environmental pollution mitigation. Innovations include fuel-less Vis-LDMs with hybrid structures and crystalline materials, and biofuel alternatives like water and glucose, though logistical challenges persist. The use of natural materials like lignin and cellulose nanocrystals promotes sustainability but faces energy conversion efficiency challenges. Strategies to enhance efficiency, such as doping and heterojunction formation, are discussed. Advances in stability, reuse, and magnetic recovery capabilities are also reviewed. Collective behavior and environmental adaptability are explored to improve catalytic efficiency. Despite the presented advances, definitive solutions to these limitations have not yet been found. A perspective on the directions for future research is also included in this review, namely the need to resolve issues of scalability, cost-effectiveness, and environmental compatibility. Additionally, investing in Vis-LDMs with programmable routes and precise navigation can enhance versatility and accuracy. Selective behavior to target hazardous contaminants is important; the molecular imprinting technique being a potential solution. Future research should also focus on real-world testing and navigation improvements. Overcoming these challenges is essential to fully harness the potential of Vis-LDMs for environmental remediation and global environmental health.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00230j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A brief review on flue gas desulfurization gypsum recovery toward calcium carbonate preparation 烟气脱硫石膏回收制备碳酸钙简评
IF 3.5
Environmental science. Advances Pub Date : 2024-09-04 DOI: 10.1039/D4VA00179F
Wei Xu, Chunhong Liu, Kaimin Du, Qiangsheng Gao, Zheming Liu and Weijian Wang
{"title":"A brief review on flue gas desulfurization gypsum recovery toward calcium carbonate preparation","authors":"Wei Xu, Chunhong Liu, Kaimin Du, Qiangsheng Gao, Zheming Liu and Weijian Wang","doi":"10.1039/D4VA00179F","DOIUrl":"10.1039/D4VA00179F","url":null,"abstract":"<p >The past several years have witnessed great progress in utilization of industrial waste gypsum. Newly developed carbonation technology toward CaCO<small><sub>3</sub></small> preparation also reveals a significant utilization way to recover high-value products from waste gypsum, whereas there is a shortage of systematic reviews reporting the most recent progress in carbonation of flue gas desulfurization gypsum (FGDG). This review provides a timely and comprehensive summary of major achievements regarding FGDG carbonation and calcium carbonate production to address future investigation directions. We start with a brief introduction of FGDG production and utilization approaches in practical use with their advantages and disadvantages. Then we systematically summarize two types of carbonation, including a direct way and an indirect way. The direct way typically involves three steps: CO<small><sub>2</sub></small> capture and CO<small><sub>3</sub></small><small><sup>2−</sup></small> formation; CaSO<small><sub>4</sub></small>·2H<small><sub>2</sub></small>O dissolution; CaCO<small><sub>3</sub></small> crystallization. High purity CaCO<small><sub>3</sub></small> is prepared and the polymorph of precipitated CaCO<small><sub>3</sub></small> is affected by many factors, such as the Ca<small><sup>2+</sup></small>/CO<small><sub>3</sub></small><small><sup>2−</sup></small> ratio, reaction conditions, impurities, and additives. The indirect way involves gypsum thermal reduction, carbonation, and sulfur recovery. Finally, challenges of current work and perspectives are presented to expedite future industrialization progress and provide a promising research direction for FGDG carbonation.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00179f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of biochar and slag on carbon sequestration potential and sustainability assessment of MgO-stabilized marine soils: insights from MIP analysis† 生物炭和矿渣对氧化镁稳定的海洋土壤固碳潜力和可持续性评估的影响:MIP 分析的启示
IF 3.5
Environmental science. Advances Pub Date : 2024-09-02 DOI: 10.1039/D4VA00095A
Chikezie Chimere Onyekwena, Qi Li, Yong Wang, Ishrat Hameed Alvi, Yunlu Hou, Chima Finnian Ukaomah and Theogene Hakuzweyezu
{"title":"Impacts of biochar and slag on carbon sequestration potential and sustainability assessment of MgO-stabilized marine soils: insights from MIP analysis†","authors":"Chikezie Chimere Onyekwena, Qi Li, Yong Wang, Ishrat Hameed Alvi, Yunlu Hou, Chima Finnian Ukaomah and Theogene Hakuzweyezu","doi":"10.1039/D4VA00095A","DOIUrl":"10.1039/D4VA00095A","url":null,"abstract":"<p >Mineral carbonation is a promising strategy for mitigating carbon emissions and combating climate change. This study investigates the efficacy and sustainability of MgO-based stabilization techniques for soft marine soils, incorporating supplementary cementitious materials (SCMs) such as biochar and slag. A combination of laboratory experiments and rigorous analyses was utilized to elucidate the complex interplay between the additives and their impacts on soil hydraulic characteristics, carbon sequestration potential, embodied energy, and economic viability. Mercury intrusion porosimetry (MIP) was employed to characterize pore structure changes induced by carbonation, while X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to correlate mineral formations. The results indicate that MgO–biochar-treated soils exhibit enhanced soil air content, pore connectivity, and carbon sequestration efficiency compared to MgO–slag-treated soils, exhibiting reduced pore volumes and limited CO<small><sub>2</sub></small> diffusion. Integrating biochar with MgO enhanced brucite and nesquehonite precipitation due to biochar's porous structure and functionalized surface area, facilitating gas diffusion and nucleation for mineral formation. Sustainability assessments highlight the environmental and economic trade-offs, positioning MgO–biochar and MgO–slag combinations as cost-effective and environmentally friendly alternatives. This research provides theoretical guidance for sustainable soil stabilization and efficient CO<small><sub>2</sub></small> mineralization, offering valuable insights for researchers, practitioners, and policymakers addressing climate change challenges.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00095a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naked eye detection of arsenite, arsenate, and H2S by a Schiff base naphthaldehyde conjugate using a single paper strip, based on a deprotonation mechanism† 基于去质子化机理,使用单纸条的席夫碱萘醛共轭物裸眼检测亚砷酸盐、砷酸盐和 H2S
IF 3.5
Environmental science. Advances Pub Date : 2024-08-27 DOI: 10.1039/D4VA00213J
Diptiman De, Priyotosh Ghosh, Sriman De and Prithidipa Sahoo
{"title":"Naked eye detection of arsenite, arsenate, and H2S by a Schiff base naphthaldehyde conjugate using a single paper strip, based on a deprotonation mechanism†","authors":"Diptiman De, Priyotosh Ghosh, Sriman De and Prithidipa Sahoo","doi":"10.1039/D4VA00213J","DOIUrl":"10.1039/D4VA00213J","url":null,"abstract":"<p >Considering the significant toxicity of arsenite (AsO<small><sub>2</sub></small><small><sup>−</sup></small>), arsenate (AsO<small><sub>4</sub></small><small><sup>3−</sup></small>), and hydrogen sulphide (H<small><sub>2</sub></small>S), the early detection of these ions and gas using simple methods like naked-eye chemosensing could have substantial implications for environmental and industrial applications. With these factors in mind, we have developed a novel and straightforward colorimetric chemosensor called NADNP (2-hydroxy naphthaldehyde conjugated 2,4-dinitrophenyl hydrazine) for swift paper-based colorimetric detection of arsenite, arsenate, and H<small><sub>2</sub></small>S, based on a deprotonation mechanism. NADNP exhibits strong binding affinity towards sulfide, arsenite, and arsenate, with very lower detection limits (LOD) of 0.17 μM, 0.15 μM and 0.15 μM respectively, and the binding stoichiometry between these detected ions and NADNP is determined to be 1 : 1 through Job's plot analysis. Structural elucidation and electronic properties calculation have been conducted <em>via</em> DFT (Density Functional Theory) studies for correlation with the spectroscopic analyses. The ‘three-in-one’ paper strip-based chemosensor could be considered a promising colorimetric tool for rapid, cost-effective, selective, and sensitive “on-spot” sensing and monitoring of arsenite, arsenate, and sulfide in environmental samples.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00213j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信