{"title":"Machine-Learning Applications in Baikal-GVD: Current Status","authors":"I. Kharuk, G. Plotnikov, A. Matseiko","doi":"10.1134/S1063778825700449","DOIUrl":"10.1134/S1063778825700449","url":null,"abstract":"<p>In this report we present machine-learning-based approaches for analyzing Baikal-GVD data. The framework addresses five key challenges in neutrino detection: suppression of air-shower-induced events, rejecting noise activations of optical modules, classification of track and cascade-like hits, reconstruction of neutrino incoming angles, and energy estimation. For each task, we discuss the physical motivation and demonstrate the performance metrics. We introduce a data processing pipeline that incorporates these neural networks and discuss how it can improve both the accuracy and efficiency of data analysis in the Baikal-GVD experiment.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"254 - 259"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The TOF400 and TOF700 System Performance During the First Physics Run at the BM@N Experiment","authors":"Irina Zhavoronkova, Mikhail Rumyantsev, Sergey Merts, Vasilisa Lenivenko, Anastasia Khukhaeva","doi":"10.1134/S1063778825700346","DOIUrl":"10.1134/S1063778825700346","url":null,"abstract":"<p>The BM@N experiment is a fixed-target experiment at the NICA accelerator complex and aims to study the interactions of relativistic heavy ions in the energy range corresponding to high baryon density. To identify charged particles in the BM@N, two time-of-flight systems, TOF400 and TOF700, are used. After the 2022–2023 physics run of the experiment, a series of calibration procedures was performed. In the work described are details of the calibration technique as well as evaluation of the system characteristics.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"291 - 296"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Veresnikova, Yu. M. Gavrilyuk, V. V. Kazalov, M. M. Kochkarov
{"title":"Study of the Possibility of Using 3D Printing in Low-Background Experiments","authors":"A. V. Veresnikova, Yu. M. Gavrilyuk, V. V. Kazalov, M. M. Kochkarov","doi":"10.1134/S1063778825700450","DOIUrl":"10.1134/S1063778825700450","url":null,"abstract":"<p>The paper considers the possibility of using 3D printing technology to manufacture structural elements of ionizing radiation detectors. For this purpose, a housing for a scintillation detector with a volume of approximately 73 cm<span>({}^{3})</span> was printed. Based on this printed housing, a scintillation detector was constructed, utilizing a scintillator made from LAB with additives of PPO (2 g/L) and Bis-MSB (0.02 g/L). The volume of the detector was viewed using a PMT-97. To verify the functionality of the experimental setup, calibration measurements were conducted with a <span>({}^{137})</span>Cs source, and a background spectrum was collected over 16 hours in the laboratory building of the BNO INR RAS. The results obtained confirmed the feasibility of using 3D printing for the fabrication of structural components of detectors.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"321 - 326"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of the Trigger System of the MPD Experiment","authors":"V. G. Riabov","doi":"10.1134/S1063778825700292","DOIUrl":"10.1134/S1063778825700292","url":null,"abstract":"<p>The Multi-Purpose Detector (MPD) is a heavy-ion experiment of the NICA complex under construction at JINR, Russia. With heavy-ion collisions in the collider mode, MPD will be able to cover the energy range <span>(sqrt{s_{NN}}=4{-}11)</span> GeV and thus study the baryon-rich region of the QCD phase diagram. The trigger system of the MPD detector includes several subsystems covering the forward and central rapidity regions. In this contribution, we review the performance of the system for the collider mode of operation, and discuss the implications for the system size and the collision energy scans needed for successful implementation of the NICA physics program.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"297 - 301"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validating Position Reconstruction Algorithm with ({}^{mathbf{241}})Am–({}^{mathbf{9}})Be Neutron Source in DEAP-3600","authors":"A. V. Grobov, A. I. Ilyasov","doi":"10.1134/S1063778825700280","DOIUrl":"10.1134/S1063778825700280","url":null,"abstract":"<p>The DEAP-3600 experiment uses a modern coordinate reconstruction algorithm that utilizes machine learning. This algorithm performed well compared to likelihood-based approaches. Here we validate our neural network based algorithm on data obtained using <span>({}^{241})</span>Am–<span>({}^{9})</span>Be radioactive source. The results obtained confirm algorithm validity.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"285 - 290"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu. S. Tsyganov, D. Ibadullayev, A. N. Polyakov, A. A. Voinov, M. V. Shumeiko
{"title":"DSSD Based Detection System of the DGFRS-2 Setup: Design, Results, Developments","authors":"Yu. S. Tsyganov, D. Ibadullayev, A. N. Polyakov, A. A. Voinov, M. V. Shumeiko","doi":"10.1134/S1063778825700322","DOIUrl":"10.1134/S1063778825700322","url":null,"abstract":"<p>Double Side Silicon Detector (DSSD) based spectrometer of the DGFRS-2 setup has been applied in different heavy ion induced complete fusion nuclear reactions leading to formation of superheavy nuclei. Nuclear reactions with <span>({}^{48})</span>Ca, <span>({}^{54})</span>Cr, <span>({}^{50})</span>Ti, <span>({}^{40})</span>Ar projectiles were used. Targets of <span>({}^{238})</span>U, <span>({}^{242})</span>Pu, <span>({}^{243})</span>Am,<span>({}^{232})</span>Th, <span>({}^{nat})</span>Yb were used in the long term irradiations. We report about different stability tests during this long term experiment. Formation of the evaporation residue (ER) registered energy spectrum measured with DSSD focal plane detector is presented.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"332 - 337"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masses of 92 ({1s})-Hadrons in Chiral-Invariant Phase Space Model","authors":"Mikhail Kosov","doi":"10.1134/S1063778825600502","DOIUrl":"10.1134/S1063778825600502","url":null,"abstract":"<p>In the Chiral-Invariant Phase Space Model constituent quarks of hadrons are embedded in nonperturbative vacuum with a boiling temperature <span>(T_{c})</span>. The color-electric binding energy is proportional to the reduced energy of quarks. The mean spin products for the color-magnetic shifts are calculated according to the simplified para-statistics rules. The 61 hadron masses are fitted by 8 parameters, including <span>(T_{c})</span> and 5 quark masses. Masses of the 21 hadrons including double and triple heavy baryons are predicted.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"210 - 219"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. A. Kouzakov, I. S. Stepantsov, A. I. Studenikin, SATURNE collaboration
{"title":"Status and Physics Potential of SATURNE","authors":"K. A. Kouzakov, I. S. Stepantsov, A. I. Studenikin, SATURNE collaboration","doi":"10.1134/S1063778825700395","DOIUrl":"10.1134/S1063778825700395","url":null,"abstract":"<p>The Sarov Tritium Neutrino Experiment (SATURNE) is designed to study coherent elastic neutrino–atom scattering (CE<span>(nu)</span>AS) and to search for the neutrino magnetic moment. The measurements will be performed in a low-background laboratory in Sarov using a liquid He-4 detector in a superfluid state and a high-intensity tritium source of electron antineutrinos. The He-4 detector with a total volume of 1000 liters will operate at a temperature between 40 and 60 mK and will be sensitive to energy signals of the order of a few meV due to the quantum evaporation channel. The tritium source will have an activity of about at least 10 MCi and possibly up to 40 MCi. It is expected that after five years of data collection, SATURNE will be able to report the first observation of the CE<span>(nu)</span>AS process. By measuring this neutrino interaction channel, it will achieve sensitivity to the neutrino magnetic moment <span>(mu_{nu})</span> at a level of <span>({sim}10^{-13},mu_{textrm{B}})</span>, which is about an order of magnitude better than the current world-leading constraints.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"275 - 279"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. M. Budnev, I. I. Astapov, P. A. Bezyazeekov, E. A. Bonvech, A. Blinov, A. N. Borodin, A. V. Bulan, P. V. Busygin, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, E. O. Gress, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. D. Ivanova, A. L. Ivanova, M. A. Iliushin, I. A. Kabannik, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. V. Lavrova, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. Lubsandorzhiev, A. Lukanov, S. D. Malakhov, R. R. Mirgazov, R. D. Monkhoev, E. A. Okuneva, E. A. Osipova, A. L. Pakhorukov, L. V. Pankov, A. Pan, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, E. G. Popova, E. B. Postnikov, V. V. Prosin, A. A. Pushnin, R. I. Raikin, A. V. Razumov, G. I. Rubtsov, E. V. Ryabov, V. S. Samoliga, I. Satyshev, A. A. Silaev, A. A. Silaev, A. Yu. Sidorenkov, A. V. Skurikhin, A. V. Sokolov, L. G. Sveshnikova, A. Shaikovsky, M. V. Shulga, V. A. Tabolenko, M. Yu. Ternovoy, N. A. Ushakov, P. A. Volchugov, N. V. Volkov, D. M. Voronin, V. Zirakashvili, A. V. Zagorodnikov, D. P. Zhurov, I. I. Yashin
{"title":"The TAIGA Experiment—Current Status, Recent Results, and Development Prospects","authors":"N. M. Budnev, I. I. Astapov, P. A. Bezyazeekov, E. A. Bonvech, A. Blinov, A. N. Borodin, A. V. Bulan, P. V. Busygin, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, E. O. Gress, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. D. Ivanova, A. L. Ivanova, M. A. Iliushin, I. A. Kabannik, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. V. Lavrova, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. Lubsandorzhiev, A. Lukanov, S. D. Malakhov, R. R. Mirgazov, R. D. Monkhoev, E. A. Okuneva, E. A. Osipova, A. L. Pakhorukov, L. V. Pankov, A. Pan, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, E. G. Popova, E. B. Postnikov, V. V. Prosin, A. A. Pushnin, R. I. Raikin, A. V. Razumov, G. I. Rubtsov, E. V. Ryabov, V. S. Samoliga, I. Satyshev, A. A. Silaev, A. A. Silaev, A. Yu. Sidorenkov, A. V. Skurikhin, A. V. Sokolov, L. G. Sveshnikova, A. Shaikovsky, M. V. Shulga, V. A. Tabolenko, M. Yu. Ternovoy, N. A. Ushakov, P. A. Volchugov, N. V. Volkov, D. M. Voronin, V. Zirakashvili, A. V. Zagorodnikov, D. P. Zhurov, I. I. Yashin","doi":"10.1134/S106377882570036X","DOIUrl":"10.1134/S106377882570036X","url":null,"abstract":"<p>The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV and astroparticle physics. The TAIGA experiment current status, recent results and development prospects are presented.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"232 - 241"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S106377882570036X.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beam Tests of the Scintillation Detector Based on Strong Scattering Media","authors":"A. Krapiva, D. Svirida","doi":"10.1134/S1063778825700486","DOIUrl":"10.1134/S1063778825700486","url":null,"abstract":"<p>The opaque scintillator detector is a novel concept of a new generation of position-sensitive detectors. The main idea is to localize the light near the point of its scintillation using an optically scattering medium. The first published results by the LiquidO Collaboration are based on the application of an opaque liquid scintillator. Our approach suggests the usage of media based on a solid granular organic scintillator and an array of WLS fibers with SiPMs as photodetectors. The report describes new results obtained during the beam test of different configurations of scintillating and scattering media with external proportional chambers as a tracking system. The results of the media comparison and the estimation of the track reconstruction accuracy are presented.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"327 - 331"},"PeriodicalIF":0.4,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}