Dystonia最新文献

筛选
英文 中文
Effects of botulinum neurotoxin on regularity of head oscillations in cervical dystonia 肉毒杆菌神经毒素对颈肌张力障碍患者头部摆动规律性的影响
Dystonia Pub Date : 2024-03-06 DOI: 10.3389/dyst.2024.12347
Hanieh Agharazi, H. A. Jinnah, David S. Zee, A. Shaikh
{"title":"Effects of botulinum neurotoxin on regularity of head oscillations in cervical dystonia","authors":"Hanieh Agharazi, H. A. Jinnah, David S. Zee, A. Shaikh","doi":"10.3389/dyst.2024.12347","DOIUrl":"https://doi.org/10.3389/dyst.2024.12347","url":null,"abstract":"Introduction: This study explores the effects of botulinum neurotoxin (BoNT) on the relationship between dystonia and tremor, specifically focusing on cervical dystonia (CD) and its connection to head tremor.Methods: Fourteen CD patients were recruited; eight (57%) with clinically observable head oscillations were included in further analysis. A high-resolution magnetic search coil system precisely measured head movements, addressing two questions: 1) BoNT’s effects on head movement amplitude, frequency, and regularity, and 2) BoNT’s influence on the relationship between head position and head oscillations. For the first question, temporal head position measurements of three patients were analyzed before and after BoNT injection. The second question examined the effects of BoNT injections on the dependence of the oscillations on the position of the head.Results: Three distinct trends were observed: shifts from regular to irregular oscillations, transitions from irregular to regular oscillations, and an absence of change. Poincaré analysis revealed that BoNT induced changes in regularity, aligning oscillations closer to a consistent “set point” of regularity. BoNT injections reduced head oscillation amplitude, particularly in head orientations linked to high-intensity pre-injection oscillations. Oscillation frequency decreased in most cases, and overall variance in the amplitude of head position decreased post-injection.Discussion: These findings illuminate the complexity of CD but also suggest therapeutic potential for BoNT. They show that co-existing mechanisms contribute to regular and irregular head oscillations in CD, which involve proprioception and central structures like the cerebellum and basal ganglia. These insights advocate for personalized treatment to optimize outcomes that is based on individual head oscillation characteristics.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140078011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ε-sarcoglycan myoclonus-dystonia—overview of neurophysiological, behavioral, and imaging characteristics ε-肌痉挛-肌张力障碍--神经生理学、行为学和影像学特征综述
Dystonia Pub Date : 2024-02-21 DOI: 10.3389/dyst.2024.11693
Feline Hamami, Skadi Gerkensmeier, Alexander Münchau, A. Weissbach
{"title":"ε-sarcoglycan myoclonus-dystonia—overview of neurophysiological, behavioral, and imaging characteristics","authors":"Feline Hamami, Skadi Gerkensmeier, Alexander Münchau, A. Weissbach","doi":"10.3389/dyst.2024.11693","DOIUrl":"https://doi.org/10.3389/dyst.2024.11693","url":null,"abstract":"Myoclonus-Dystonia is a rare, neurological movement disorder, clinically characterized by myoclonic jerks and dystonic symptoms, such as cervical dystonia and writer’s cramp. Psychiatric symptoms, like anxiety, depression, and addiction, are frequently reported. Monogenic Myoclonus-Dystonia is mostly caused by pathogenic variants in the ε-sarcoglycan gene, which is among other regions highly expressed in the cerebellum. The current pharmacological treatment is not satisfactory. Neurophysiological and imaging studies in this patient population are scarce with partly heterogeneous results and sometimes important limitations. However, some studies point towards subcortical alterations, e.g., of the cerebellum and its connections. Further studies addressing previous limitations are important for a better understanding of the underlying pathology of Myoclonus-Dystonia and might build a bridge for the development of future treatment.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140444739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling dystonia circuitry in rodent models using novel neuromodulation techniques 利用新型神经调控技术揭示啮齿动物模型中的肌张力障碍回路
Dystonia Pub Date : 2024-02-19 DOI: 10.3389/dyst.2024.11793
L. Rauschenberger, Chi Wang Ip
{"title":"Unraveling dystonia circuitry in rodent models using novel neuromodulation techniques","authors":"L. Rauschenberger, Chi Wang Ip","doi":"10.3389/dyst.2024.11793","DOIUrl":"https://doi.org/10.3389/dyst.2024.11793","url":null,"abstract":"Dystonia is a network disorder presumed to result from abnormalities in multiple brain regions and in multiple cell populations. The specific pathomechanisms affecting the motor circuits in dystonia are, however, still largely unclear. Animal models for dystonia have long been used to advance our understanding on how specific brain regions and cell populations are involved in dystonia symptomatogenesis. Lesioning, pharmacological modulation and electrical stimulation paradigms were able to highlight that both the basal ganglia and the cerebellum are pathologically altered in these animal models for dystonia. Techniques such as optogenetics and chemogenetics now offer the opportunity for targeted modulation of brain regions and most importantly cell populations and circuits. This could not only allow for a better understanding of the dystonic brain, but potentially improve and expand treatment options. In hopes that the insights from these neuromodulation techniques will eventually translate into therapies, we aim to summarize and critically discuss the findings from different in vivo approaches used to dissect the network dysfunctions underlying dystonia.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140449611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piecing together a complex puzzle: 5 key challenges in basic dystonia research 拼凑复杂的拼图:肌张力障碍基础研究的五大挑战
Dystonia Pub Date : 2023-12-21 DOI: 10.3389/dyst.2023.11615
M. Scarduzio, David G. Standaert
{"title":"Piecing together a complex puzzle: 5 key challenges in basic dystonia research","authors":"M. Scarduzio, David G. Standaert","doi":"10.3389/dyst.2023.11615","DOIUrl":"https://doi.org/10.3389/dyst.2023.11615","url":null,"abstract":"Dystonia refers to a heterogeneous group of movement disorders characterized by involuntary, sustained muscle contractions leading to repetitive twisting movements and abnormal postures. Dystonia has a broad clinical spectrum and can affect different body regions, causing significant disability and reduced quality of life. Despite significant progress in understanding the disorder, many challenges in dystonia research remain. This mini-review aims to highlight the major challenges facing basic and translational research in this field, including 1) heterogeneity of the disorder, 2) limited understanding of its pathophysiology, 3) complications of using animal models, 4) lack of a framework linking genes, biochemistry, circuits, and clinical phenomenology, and 5) limited research funding. Identifying and discussing these challenges can help prioritize research efforts and resources, highlight the need for further investigation and funding, and inspire action towards addressing these challenges.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias 肌张力障碍网络的功能和功能障碍:对后天性和孤立性肌张力障碍神经回路的探索
Dystonia Pub Date : 2023-12-13 DOI: 10.3389/dyst.2023.11805
Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, R. Sillitoe
{"title":"Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias","authors":"Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, R. Sillitoe","doi":"10.3389/dyst.2023.11805","DOIUrl":"https://doi.org/10.3389/dyst.2023.11805","url":null,"abstract":"Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad “dystonia network” encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the “geste antagoniste” or “sensory trick” to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139005146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia 肌张力障碍、震颤和共济失调啮齿动物模型的小脑功能障碍
Dystonia Pub Date : 2023-12-08 DOI: 10.3389/dyst.2023.11515
Meike E. van der Heijden, R. Sillitoe
{"title":"Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia","authors":"Meike E. van der Heijden, R. Sillitoe","doi":"10.3389/dyst.2023.11515","DOIUrl":"https://doi.org/10.3389/dyst.2023.11515","url":null,"abstract":"Dystonia is a movement disorder characterized by involuntary co- or over-contractions of the muscles, which results in abnormal postures and movements. These symptoms arise from the pathophysiology of a brain-wide dystonia network. There is mounting evidence suggesting that the cerebellum is a central node in this network. For example, manipulations that target the cerebellum cause dystonic symptoms in mice, and cerebellar neuromodulation reduces these symptoms. Although numerous findings provide insight into dystonia pathophysiology, they also raise further questions. Namely, how does cerebellar pathophysiology cause the diverse motor abnormalities in dystonia, tremor, and ataxia? Here, we describe recent work in rodents showing that distinct cerebellar circuit abnormalities could define different disorders and we discuss potential mechanisms that determine the behavioral presentation of cerebellar diseases.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138587892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mini-review of the pathophysiology of task-specific tremor: insights from electrophysiological and neuroimaging findings 任务特异性震颤的病理生理学综述:来自电生理和神经影像学发现的见解
Dystonia Pub Date : 2023-11-07 DOI: 10.3389/dyst.2023.11347
Yih-Chih Jacinta Kuo, Kai-Hsiang Stanley Chen
{"title":"A mini-review of the pathophysiology of task-specific tremor: insights from electrophysiological and neuroimaging findings","authors":"Yih-Chih Jacinta Kuo, Kai-Hsiang Stanley Chen","doi":"10.3389/dyst.2023.11347","DOIUrl":"https://doi.org/10.3389/dyst.2023.11347","url":null,"abstract":"Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia 神经元-胶质细胞相互作用的转录调控网络及其对DYT6肌张力障碍的影响
Dystonia Pub Date : 2023-10-30 DOI: 10.3389/dyst.2023.11796
Dhananjay Yellajoshyula
{"title":"Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia","authors":"Dhananjay Yellajoshyula","doi":"10.3389/dyst.2023.11796","DOIUrl":"https://doi.org/10.3389/dyst.2023.11796","url":null,"abstract":"Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-motor symptoms in dystonia: from diagnosis to treatment 肌张力障碍的非运动症状:从诊断到治疗
Dystonia Pub Date : 2023-10-24 DOI: 10.3389/dyst.2023.11860
Kathryn J. Peall, Brian D. Berman, Norbert Bruggemann, Giovanni Defazio, Hortensia Gimeno, H. A. Jinnah, Joel S. Perlmutter, Sarah E. Pirio Richardson, Emmanuel Roze, Anette Schrag, Michele Tinazzi, Marie Vidailhet, Aparna Wagle Shukla, Yulia Worbe, Jan K. Teller, Davide Martino
{"title":"Non-motor symptoms in dystonia: from diagnosis to treatment","authors":"Kathryn J. Peall, Brian D. Berman, Norbert Bruggemann, Giovanni Defazio, Hortensia Gimeno, H. A. Jinnah, Joel S. Perlmutter, Sarah E. Pirio Richardson, Emmanuel Roze, Anette Schrag, Michele Tinazzi, Marie Vidailhet, Aparna Wagle Shukla, Yulia Worbe, Jan K. Teller, Davide Martino","doi":"10.3389/dyst.2023.11860","DOIUrl":"https://doi.org/10.3389/dyst.2023.11860","url":null,"abstract":"The Dystonia Medical Research Foundation organized an expert virtual workshop in March 2023 to review the evidence on non-motor symptoms across the spectrum of dystonia, discuss existing assessment methods, need for their harmonisation and roadmap to achieve this, and evaluate potential treatment approaches. Albeit the most investigated non-motor domains, experts highlighted the need to identify the most accurate screening procedure for depression and anxiety, clarify their mechanistic origin and quantify their response to already available therapies. Future exploration of sleep disruption in dystonia should include determining the accuracy and feasibility of wearable devices, understanding the contribution of psychotropic medication to its occurrence, and defining the interaction between maladaptive plasticity and abnormal sleep patterns. Despite recent advances in the assessment of pain in dystonia, more research is needed to elucidate the relative importance of different mechanisms called into play to explain this impactful sensory feature and the most appropriate treatments. Amongst the different non-motor features investigated in dystonia, cognitive dysfunction and fatigue require an in-depth observation to evaluate their functional impact, their clinical profile and assessment methods and, in the case of cognition, whether impairment represents a prodrome of dementia. Finally, experts identified the development and field validation of a self-rated screening tool encompassing the full spectrum of non-motor symptoms as the most urgent step towards incorporating the management of these features into routine clinical practice.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional imaging of deep brain stimulation in dystonia: a review 深部脑刺激治疗肌张力障碍的功能影像学研究进展
Dystonia Pub Date : 2023-10-06 DOI: 10.3389/dyst.2023.11440
Ian O. Bledsoe, Melanie A. Morrison
{"title":"Functional imaging of deep brain stimulation in dystonia: a review","authors":"Ian O. Bledsoe, Melanie A. Morrison","doi":"10.3389/dyst.2023.11440","DOIUrl":"https://doi.org/10.3389/dyst.2023.11440","url":null,"abstract":"Much remains to be learned about the mechanism of benefit of deep brain stimulation in movement disorders in general and dystonia specifically. A full accounting of the pathophysiology of dystonia additionally remains unclear. Given its ability to evaluate whole-brain network changes, functional neuroimaging is an important tool to advance understanding of the effects of deep brain stimulation, which in turn could offer insight into the pathophysiology of dystonia and suggest novel deep brain stimulation targets for the disorder. This review surveys the published literature of functional neuroimaging studies evaluating deep brain stimulation effects in dystonia, including PET, SPECT, and functional MRI studies. To date, study cohorts have been relatively small, though several general patterns emerge when studies are viewed collectively, including reduced functional activation patterns with stimulation turned on during motor tasks, particularly in frontal cortical regions. During rest with stimulation on, several studies showed areas of relatively decreased perfusion only in those participants who experienced clinical benefit from deep brain stimulation. Future research may benefit from larger cohorts with more homogeneous forms of dystonia, potentially enabled by multi-center initiatives. Additional benefits may result from more detailed longitudinal assessments and greater use of functional MRI, with study designs that take into account the technical limitations of this modality in the context of movement disorders and deep brain stimulation.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信