Laura C Rosella, Mackenzie Hurst, Meghan O'Neill, Lief Pagalan, Lori Diemert, Kathy Kornas, Andy Hong, Stacey Fisher, Douglas G Manuel
{"title":"A study protocol for a predictive model to assess population-based avoidable hospitalization risk: Avoidable Hospitalization Population Risk Prediction Tool (AvHPoRT).","authors":"Laura C Rosella, Mackenzie Hurst, Meghan O'Neill, Lief Pagalan, Lori Diemert, Kathy Kornas, Andy Hong, Stacey Fisher, Douglas G Manuel","doi":"10.1186/s41512-024-00165-5","DOIUrl":"10.1186/s41512-024-00165-5","url":null,"abstract":"<p><strong>Introduction: </strong>Avoidable hospitalizations are considered preventable given effective and timely primary care management and are an important indicator of health system performance. The ability to predict avoidable hospitalizations at the population level represents a significant advantage for health system decision-makers that could facilitate proactive intervention for ambulatory care-sensitive conditions (ACSCs). The aim of this study is to develop and validate the Avoidable Hospitalization Population Risk Tool (AvHPoRT) that will predict the 5-year risk of first avoidable hospitalization for seven ACSCs using self-reported, routinely collected population health survey data.</p><p><strong>Methods and analysis: </strong>The derivation cohort will consist of respondents to the first 3 cycles (2000/01, 2003/04, 2005/06) of the Canadian Community Health Survey (CCHS) who are 18-74 years of age at survey administration and a hold-out data set will be used for external validation. Outcome information on avoidable hospitalizations for 5 years following the CCHS interview will be assessed through data linkage to the Discharge Abstract Database (1999/2000-2017/2018) for an estimated sample size of 394,600. Candidate predictor variables will include demographic characteristics, socioeconomic status, self-perceived health measures, health behaviors, chronic conditions, and area-based measures. Sex-specific algorithms will be developed using Weibull accelerated failure time survival models. The model will be validated both using split set cross-validation and external temporal validation split using cycles 2000-2006 compared to 2007-2012. We will assess measures of overall predictive performance (Nagelkerke R<sup>2</sup>), calibration (calibration plots), and discrimination (Harrell's concordance statistic). Development of the model will be informed by the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.</p><p><strong>Ethics and dissemination: </strong>This study was approved by the University of Toronto Research Ethics Board. The predictive algorithm and findings from this work will be disseminated at scientific meetings and in peer-reviewed publications.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"8 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lana Biot, Laura Jacxsens, Emilie Cardon, Huib Versnel, Koenraad S Rhebergen, Ralf A Boerboom, Annick Gilles, Vincent Van Rompaey, Marc J W Lammers
{"title":"Validation of the acoustic change complex (ACC) prediction model to predict speech perception in noise in adult patients with hearing loss: a study protocol.","authors":"Lana Biot, Laura Jacxsens, Emilie Cardon, Huib Versnel, Koenraad S Rhebergen, Ralf A Boerboom, Annick Gilles, Vincent Van Rompaey, Marc J W Lammers","doi":"10.1186/s41512-024-00164-6","DOIUrl":"10.1186/s41512-024-00164-6","url":null,"abstract":"<p><strong>Background: </strong>Speech perception tests are essential to measure the functional use of hearing and to determine the effectiveness of hearing aids and implantable auditory devices. However, these language-based tests require active participation and are influenced by linguistic and neurocognitive skills limiting their use in patients with insufficient language proficiency, cognitive impairment, or in children. We recently developed a non-attentive and objective speech perception prediction model: the Acoustic Change Complex (ACC) prediction model. The ACC prediction model uses electroencephalography to measure alterations in cortical auditory activity caused by frequency changes. The aim is to validate this model in a large-scale external validation study in adult patients with varying degrees of sensorineural hearing loss (SNHL) to confirm the high predictive value of the ACC model and to assess its test-retest reliability.</p><p><strong>Methods: </strong>A total of 80 participants, aged 18-65 years, will be enrolled in the study. The categories of severity of hearing loss will be used as a blocking factor to establish an equal distribution of patients with various degrees of sensorineural hearing loss. During the first visit, pure tone audiometry, speech in noise tests, a phoneme discrimination test, and the first ACC measurement will be performed. During the second visit (after 1-4 weeks), the same ACC measurement will be performed to assess the test-retest reliability. The acoustic change stimuli for ACC measurements consist of a reference tone with a base frequency of 1000, 2000, or 4000 Hz with a duration of 3000 ms, gliding to a 300-ms target tone with a frequency that is 12% higher than the base frequency. The primary outcome measures are (1) the level of agreement between the predicted speech reception threshold (SRT) and the behavioral SRT, and (2) the level of agreement between the SRT calculated by the first ACC measurement and the SRT of the second ACC measurement. Level of agreement will be assessed with Bland-Altman plots.</p><p><strong>Discussion: </strong>Previous studies by our group have shown the high predictive value of the ACC model. The successful validation of this model as an effective and reliable biomarker of speech perception will directly benefit the general population, as it will increase the accuracy of hearing evaluations and improve access to adequate hearing rehabilitation.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"8 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Merijn H Rijk, Tamara N Platteel, Geert-Jan Geersing, Monika Hollander, Bert L G P Dalmolen, Paul Little, Frans H Rutten, Maarten van Smeden, Roderick P Venekamp
{"title":"Predicting adverse outcomes in adults with a community-acquired lower respiratory tract infection: a protocol for the development and validation of two prediction models for (i) all-cause hospitalisation and mortality and (ii) cardiovascular outcomes.","authors":"Merijn H Rijk, Tamara N Platteel, Geert-Jan Geersing, Monika Hollander, Bert L G P Dalmolen, Paul Little, Frans H Rutten, Maarten van Smeden, Roderick P Venekamp","doi":"10.1186/s41512-023-00161-1","DOIUrl":"10.1186/s41512-023-00161-1","url":null,"abstract":"<p><strong>Background: </strong>Community-acquired lower respiratory tract infections (LRTI) are common in primary care and patients at particular risk of adverse outcomes, e.g., hospitalisation and mortality, are challenging to identify. LRTIs are also linked to an increased incidence of cardiovascular diseases (CVD) following the initial infection, whereas concurrent CVD might negatively impact overall prognosis in LRTI patients. Accurate risk prediction of adverse outcomes in LRTI patients, while considering the interplay with CVD, can aid general practitioners (GP) in the clinical decision-making process, and may allow for early detection of deterioration. This paper therefore presents the design of the development and external validation of two models for predicting individual risk of all-cause hospitalisation or mortality (model 1) and short-term incidence of CVD (model 2) in adults presenting to primary care with LRTI.</p><p><strong>Methods: </strong>Both models will be developed using linked routine electronic health records (EHR) data from Dutch primary and secondary care, and the mortality registry. Adults aged ≥ 40 years with a GP-diagnosis of LRTI between 2016 and 2019 are eligible for inclusion. Relevant patient demographics, medical history, medication use, presenting signs and symptoms, and vital and laboratory measurements will be considered as candidate predictors. Outcomes of interest include 30-day all-cause hospitalisation or mortality (model 1) and 90-day CVD (model 2). Multivariable elastic net regression techniques will be used for model development. During the modelling process, the incremental predictive value of CVD for hospitalisation or all-cause mortality (model 1) will also be assessed. The models will be validated through internal-external cross-validation and external validation in an equivalent cohort of primary care LRTI patients.</p><p><strong>Discussion: </strong>Implementation of currently available prediction models for primary care LRTI patients is hampered by limited assessment of model performance. While considering the role of CVD in LRTI prognosis, we aim to develop and externally validate two models that predict clinically relevant outcomes to aid GPs in clinical decision-making. Challenges that we anticipate include the possibility of low event rates and common problems related to the use of EHR data, such as candidate predictor measurement and missingness, how best to retrieve information from free text fields, and potential misclassification of outcome events.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Nickson, Henrik Singmann, Caroline Meyer, Carla Toro, Lukasz Walasek
{"title":"Replicability and reproducibility of predictive models for diagnosis of depression among young adults using Electronic Health Records.","authors":"David Nickson, Henrik Singmann, Caroline Meyer, Carla Toro, Lukasz Walasek","doi":"10.1186/s41512-023-00160-2","DOIUrl":"10.1186/s41512-023-00160-2","url":null,"abstract":"<p><strong>Background: </strong>Recent advances in machine learning combined with the growing availability of digitized health records offer new opportunities for improving early diagnosis of depression. An emerging body of research shows that Electronic Health Records can be used to accurately predict cases of depression on the basis of individual's primary care records. The successes of these studies are undeniable, but there is a growing concern that their results may not be replicable, which could cast doubt on their clinical usefulness.</p><p><strong>Methods: </strong>To address this issue in the present paper, we set out to reproduce and replicate the work by Nichols et al. (2018), who trained predictive models of depression among young adults using Electronic Healthcare Records. Our contribution consists of three parts. First, we attempt to replicate the methodology used by the original authors, acquiring a more up-to-date set of primary health care records to the same specification and reproducing their data processing and analysis. Second, we test models presented in the original paper on our own data, thus providing out-of-sample prediction of the predictive models. Third, we extend past work by considering several novel machine-learning approaches in an attempt to improve the predictive accuracy achieved in the original work.</p><p><strong>Results: </strong>In summary, our results demonstrate that the work of Nichols et al. is largely reproducible and replicable. This was the case both for the replication of the original model and the out-of-sample replication applying NRCBM coefficients to our new EHRs data. Although alternative predictive models did not improve model performance over standard logistic regression, our results indicate that stepwise variable selection is not stable even in the case of large data sets.</p><p><strong>Conclusion: </strong>We discuss the challenges associated with the research on mental health and Electronic Health Records, including the need to produce interpretable and robust models. We demonstrated some potential issues associated with the reliance on EHRs, including changes in the regulations and guidelines (such as the QOF guidelines in the UK) and reliance on visits to GP as a predictor of specific disorders.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"25"},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Tanner, Ruth H. Keogh, Carol A. C. Coupland, Julia Hippisley-Cox, Karla Diaz-Ordaz
{"title":"Dynamic updating of clinical survival prediction models in a changing environment","authors":"K. Tanner, Ruth H. Keogh, Carol A. C. Coupland, Julia Hippisley-Cox, Karla Diaz-Ordaz","doi":"10.1186/s41512-023-00163-z","DOIUrl":"https://doi.org/10.1186/s41512-023-00163-z","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"82 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Duer, Huiqin Yang, Sophie Robinson, B. Grigore, J. Sandercock, T. Snowsill, Ed Griffin, Jaime Peters, Chris Hyde
{"title":"Do we know enough about the effect of low-dose computed tomography screening for lung cancer on mortality to act? An updated systematic review, meta-analysis and network meta-analysis of randomised controlled trials 2017 to 2021","authors":"Emma Duer, Huiqin Yang, Sophie Robinson, B. Grigore, J. Sandercock, T. Snowsill, Ed Griffin, Jaime Peters, Chris Hyde","doi":"10.1186/s41512-023-00162-0","DOIUrl":"https://doi.org/10.1186/s41512-023-00162-0","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"209 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie Riley, Kimberly Tam, Wai-Yee Tse, Andrew Connor, Yinghui Wei
{"title":"An external validation of the Kidney Donor Risk Index in the UK transplant population in the presence of semi-competing events.","authors":"Stephanie Riley, Kimberly Tam, Wai-Yee Tse, Andrew Connor, Yinghui Wei","doi":"10.1186/s41512-023-00159-9","DOIUrl":"10.1186/s41512-023-00159-9","url":null,"abstract":"<p><strong>Background: </strong>Transplantation represents the optimal treatment for many patients with end-stage kidney disease. When a donor kidney is available to a waitlisted patient, clinicians responsible for the care of the potential recipient must make the decision to accept or decline the offer based upon complex and variable information about the donor, the recipient and the transplant process. A clinical prediction model may be able to support clinicians in their decision-making. The Kidney Donor Risk Index (KDRI) was developed in the United States to predict graft failure following kidney transplantation. The survival process following transplantation consists of semi-competing events where death precludes graft failure, but not vice-versa.</p><p><strong>Methods: </strong>We externally validated the KDRI in the UK kidney transplant population and assessed whether validation under a semi-competing risks framework impacted predictive performance. Additionally, we explored whether the KDRI requires updating. We included 20,035 adult recipients of first, deceased donor, single, kidney-only transplants between January 1, 2004, and December 31, 2018, collected by the UK Transplant Registry and held by NHS Blood and Transplant. The outcomes of interest were 1- and 5-year graft failure following transplantation. In light of the semi-competing events, recipient death was handled in two ways: censoring patients at the time of death and modelling death as a competing event. Cox proportional hazard models were used to validate the KDRI when censoring graft failure by death, and cause-specific Cox models were used to account for death as a competing event.</p><p><strong>Results: </strong>The KDRI underestimated event probabilities for those at higher risk of graft failure. For 5-year graft failure, discrimination was poorer in the semi-competing risks model (0.625, 95% CI 0.611 to 0.640;0.611, 95% CI 0.597 to 0.625), but predictions were more accurate (Brier score 0.117, 95% CI 0.112 to 0.121; 0.114, 95% CI 0.109 to 0.118). Calibration plots were similar regardless of whether the death was modelled as a competing event or not. Updating the KDRI worsened calibration, but marginally improved discrimination.</p><p><strong>Conclusions: </strong>Predictive performance for 1-year graft failure was similar between death-censored and competing event graft failure, but differences appeared when predicting 5-year graft failure. The updated index did not have superior performance and we conclude that updating the KDRI in the present form is not required.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Stojanov, Soheila Aghlmandi, Andreas Marc Müller, Markus Scheibel, Matthias Flury, Laurent Audigé
{"title":"Development and internal validation of a model predicting patient-reported shoulder function after arthroscopic rotator cuff repair in a Swiss setting.","authors":"Thomas Stojanov, Soheila Aghlmandi, Andreas Marc Müller, Markus Scheibel, Matthias Flury, Laurent Audigé","doi":"10.1186/s41512-023-00156-y","DOIUrl":"10.1186/s41512-023-00156-y","url":null,"abstract":"<p><strong>Background: </strong>Prediction models for outcomes after orthopedic surgery provide patients with evidence-based postoperative outcome expectations. Our objectives were (1) to identify prognostic factors associated with the postoperative shoulder function outcome (the Oxford Shoulder Score (OSS)) and (2) to develop and validate a prediction model for postoperative OSS.</p><p><strong>Methods: </strong>Patients undergoing arthroscopic rotator cuff repair (ARCR) were prospectively documented at a Swiss orthopedic tertiary care center. The first primary ARCR in adult patients with a partial or complete rotator cuff tear were included between October 2013 and June 2021. Thirty-two potential prognostic factors were used for prediction model development. Two sets of factors identified using the knowledge from three experienced surgeons (Set 1) and Bayesian projection predictive variable selection (Set 2) were compared in terms of model performance using R squared and root-mean-squared error (RMSE) across 45 multiple imputed data sets using chained equations and complete case data.</p><p><strong>Results: </strong>Multiple imputation using data from 1510 patients was performed. Set 2 retained the following factors: American Society of Anesthesiologists (ASA) classification, baseline level of depression and anxiety, baseline OSS, operation duration, tear severity, and biceps status and treatment. Apparent model performance was R-squared = 0.174 and RMSE = 7.514, dropping to R-squared = 0.156, and RMSE = 7.603 after correction for optimism.</p><p><strong>Conclusion: </strong>A prediction model for patients undergoing ARCR was developed using solely baseline and operative data in order to provide patients and surgeons with individualized expectations for postoperative shoulder function outcomes. Yet, model performance should be improved before being used in clinical routine.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Maher, Lucy Teece, Rupert W Major, Naomi Bradbury, James F Medcalf, Nigel J Brunskill, Sarah Booth, Laura J Gray
{"title":"Using the kidney failure risk equation to predict end-stage kidney disease in CKD patients of South Asian ethnicity: an external validation study.","authors":"Francesca Maher, Lucy Teece, Rupert W Major, Naomi Bradbury, James F Medcalf, Nigel J Brunskill, Sarah Booth, Laura J Gray","doi":"10.1186/s41512-023-00157-x","DOIUrl":"10.1186/s41512-023-00157-x","url":null,"abstract":"<p><strong>Background: </strong>The kidney failure risk equation (KFRE) predicts the 2- and 5-year risk of needing kidney replacement therapy (KRT) using four risk factors - age, sex, urine albumin-to-creatinine ratio (ACR) and creatinine-based estimated glomerular filtration rate (eGFR). Although the KFRE has been recalibrated in a UK cohort, this did not consider minority ethnic groups. Further validation of the KFRE in different ethnicities is a research priority. The KFRE also does not consider the competing risk of death, which may lead to overestimation of KRT risk. This study externally validates the KFRE for patients of South Asian ethnicity and compares methods for accounting for ethnicity and the competing event of death.</p><p><strong>Methods: </strong>Data were gathered from an established UK cohort containing 35,539 individuals diagnosed with chronic kidney disease. The KFRE was externally validated and updated in several ways taking into account ethnicity, using recognised methods for time-to-event data, including the competing risk of death. A clinical impact assessment compared the updated models through consideration of referrals made to secondary care.</p><p><strong>Results: </strong>The external validation showed the risk of KRT differed by ethnicity. Model validation performance improved when incorporating ethnicity and its interactions with ACR and eGFR as additional risk factors. Furthermore, accounting for the competing risk of death improved prediction. Using criteria of 5 years ≥ 5% predicted KRT risk, the competing risks model resulted in an extra 3 unnecessary referrals (0.59% increase) but identified an extra 1 KRT case (1.92% decrease) compared to the previous best model. Hybrid criteria of predicted risk using the competing risks model and ACR ≥ 70 mg/mmol should be used in referrals to secondary care.</p><p><strong>Conclusions: </strong>The accuracy of KFRE prediction improves when updated to consider South Asian ethnicity and to account for the competing risk of death. This may reduce unnecessary referrals whilst identifying risks of KRT and could further individualise the KFRE and improve its clinical utility. Further research should consider other ethnicities.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Bang Kristensen, Anne Clausen, Michael Kriegbaum Skjødt, Jens Søndergaard, Bo Abrahamsen, Sören Möller, Katrine Hass Rubin
{"title":"An enhanced version of FREM (Fracture Risk Evaluation Model) using national administrative health data: analysis protocol for development and validation of a multivariable prediction model.","authors":"Simon Bang Kristensen, Anne Clausen, Michael Kriegbaum Skjødt, Jens Søndergaard, Bo Abrahamsen, Sören Möller, Katrine Hass Rubin","doi":"10.1186/s41512-023-00158-w","DOIUrl":"10.1186/s41512-023-00158-w","url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis poses a growing healthcare challenge owing to its rising prevalence and a significant treatment gap, as patients are widely underdiagnosed and consequently undertreated, leaving them at high risk of osteoporotic fracture. Several tools aim to improve case-finding in osteoporosis. One such tool is the Fracture Risk Evaluation Model (FREM), which in contrast to other tools focuses on imminent fracture risk and holds potential for automation as it relies solely on data that is routinely collected via the Danish healthcare registers. The present article is an analysis protocol for a prediction model that is to be used as a modified version of FREM, with the intention of improving the identification of subjects at high imminent risk of fracture by including pharmacological exposures and using more advanced statistical methods compared to the original FREM. Its main purposes are to document and motivate various aspects and choices of data management and statistical analyses.</p><p><strong>Methods: </strong>The model will be developed by employing logistic regression with grouped LASSO regularization as the primary statistical approach and gradient-boosted classification trees as a secondary statistical modality. Hyperparameter choices as well as computational considerations on these two approaches are investigated by an unsupervised data review (i.e., blinded to the outcome), which also investigates and handles multicollinarity among the included exposures. Further, we present an unsupervised review of the data and testing of analysis code with respect to speed and robustness on a remote analysis environment. The data review and code tests are used to adjust the analysis plans in a blinded manner, so as not to increase the risk of overfitting in the proposed methods.</p><p><strong>Discussion: </strong>This protocol specifies the planned tool development to ensure transparency in the modeling approach, hence improving the validity of the enhanced tool to be developed. Through an unsupervised data review, it is further documented that the planned statistical approaches are feasible and compatible with the data employed.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}