评估人群可避免住院风险的预测模型研究方案:可避免住院人群风险预测工具 (AvHPoRT)。

Laura C Rosella, Mackenzie Hurst, Meghan O'Neill, Lief Pagalan, Lori Diemert, Kathy Kornas, Andy Hong, Stacey Fisher, Douglas G Manuel
{"title":"评估人群可避免住院风险的预测模型研究方案:可避免住院人群风险预测工具 (AvHPoRT)。","authors":"Laura C Rosella, Mackenzie Hurst, Meghan O'Neill, Lief Pagalan, Lori Diemert, Kathy Kornas, Andy Hong, Stacey Fisher, Douglas G Manuel","doi":"10.1186/s41512-024-00165-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Avoidable hospitalizations are considered preventable given effective and timely primary care management and are an important indicator of health system performance. The ability to predict avoidable hospitalizations at the population level represents a significant advantage for health system decision-makers that could facilitate proactive intervention for ambulatory care-sensitive conditions (ACSCs). The aim of this study is to develop and validate the Avoidable Hospitalization Population Risk Tool (AvHPoRT) that will predict the 5-year risk of first avoidable hospitalization for seven ACSCs using self-reported, routinely collected population health survey data.</p><p><strong>Methods and analysis: </strong>The derivation cohort will consist of respondents to the first 3 cycles (2000/01, 2003/04, 2005/06) of the Canadian Community Health Survey (CCHS) who are 18-74 years of age at survey administration and a hold-out data set will be used for external validation. Outcome information on avoidable hospitalizations for 5 years following the CCHS interview will be assessed through data linkage to the Discharge Abstract Database (1999/2000-2017/2018) for an estimated sample size of 394,600. Candidate predictor variables will include demographic characteristics, socioeconomic status, self-perceived health measures, health behaviors, chronic conditions, and area-based measures. Sex-specific algorithms will be developed using Weibull accelerated failure time survival models. The model will be validated both using split set cross-validation and external temporal validation split using cycles 2000-2006 compared to 2007-2012. We will assess measures of overall predictive performance (Nagelkerke R<sup>2</sup>), calibration (calibration plots), and discrimination (Harrell's concordance statistic). Development of the model will be informed by the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.</p><p><strong>Ethics and dissemination: </strong>This study was approved by the University of Toronto Research Ethics Board. The predictive algorithm and findings from this work will be disseminated at scientific meetings and in peer-reviewed publications.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"8 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845544/pdf/","citationCount":"0","resultStr":"{\"title\":\"A study protocol for a predictive model to assess population-based avoidable hospitalization risk: Avoidable Hospitalization Population Risk Prediction Tool (AvHPoRT).\",\"authors\":\"Laura C Rosella, Mackenzie Hurst, Meghan O'Neill, Lief Pagalan, Lori Diemert, Kathy Kornas, Andy Hong, Stacey Fisher, Douglas G Manuel\",\"doi\":\"10.1186/s41512-024-00165-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Avoidable hospitalizations are considered preventable given effective and timely primary care management and are an important indicator of health system performance. The ability to predict avoidable hospitalizations at the population level represents a significant advantage for health system decision-makers that could facilitate proactive intervention for ambulatory care-sensitive conditions (ACSCs). The aim of this study is to develop and validate the Avoidable Hospitalization Population Risk Tool (AvHPoRT) that will predict the 5-year risk of first avoidable hospitalization for seven ACSCs using self-reported, routinely collected population health survey data.</p><p><strong>Methods and analysis: </strong>The derivation cohort will consist of respondents to the first 3 cycles (2000/01, 2003/04, 2005/06) of the Canadian Community Health Survey (CCHS) who are 18-74 years of age at survey administration and a hold-out data set will be used for external validation. Outcome information on avoidable hospitalizations for 5 years following the CCHS interview will be assessed through data linkage to the Discharge Abstract Database (1999/2000-2017/2018) for an estimated sample size of 394,600. Candidate predictor variables will include demographic characteristics, socioeconomic status, self-perceived health measures, health behaviors, chronic conditions, and area-based measures. Sex-specific algorithms will be developed using Weibull accelerated failure time survival models. The model will be validated both using split set cross-validation and external temporal validation split using cycles 2000-2006 compared to 2007-2012. We will assess measures of overall predictive performance (Nagelkerke R<sup>2</sup>), calibration (calibration plots), and discrimination (Harrell's concordance statistic). Development of the model will be informed by the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.</p><p><strong>Ethics and dissemination: </strong>This study was approved by the University of Toronto Research Ethics Board. The predictive algorithm and findings from this work will be disseminated at scientific meetings and in peer-reviewed publications.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\"8 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845544/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-024-00165-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-024-00165-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:可避免的住院治疗被认为是可以通过有效和及时的初级医疗管理来预防的,也是衡量医疗系统绩效的一个重要指标。对于医疗系统的决策者来说,在人群水平上预测可避免的住院治疗的能力是一项重大优势,可促进对非住院医疗敏感疾病(ACSCs)的积极干预。本研究的目的是开发并验证可避免住院人群风险工具(AvHPoRT),该工具将利用自我报告、常规收集的人群健康调查数据,预测七种非卧床护理敏感症(ACSCs)的五年首次可避免住院风险:推导队列将由加拿大社区健康调查(CCHS)前三个周期(2000/01、2003/04、2005/06)的受访者组成,这些受访者在接受调查时年龄在 18-74 岁之间,同时还将使用一个保留数据集进行外部验证。将通过与出院摘要数据库(1999/2000-2017/2018)的数据链接,评估加拿大社区健康调查(CCHS)访谈后 5 年内可避免住院的结果信息,样本量估计为 394,600 人。候选预测变量将包括人口统计学特征、社会经济状况、自我感觉健康指标、健康行为、慢性病和地区指标。将使用 Weibull 加速失败时间生存模型开发针对不同性别的算法。我们将利用 2000-2006 年周期与 2007-2012 年周期的交叉验证和外部时间验证对模型进行验证。我们将评估总体预测性能(纳格尔克 R2)、校准(校准图)和区分度(哈雷尔一致性统计量)。该模型的开发将遵循个体预后或诊断多变量预测模型透明报告(TRIPOD)声明:本研究获得了多伦多大学研究伦理委员会的批准。这项工作的预测算法和研究结果将在科学会议和同行评审刊物上公布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study protocol for a predictive model to assess population-based avoidable hospitalization risk: Avoidable Hospitalization Population Risk Prediction Tool (AvHPoRT).

Introduction: Avoidable hospitalizations are considered preventable given effective and timely primary care management and are an important indicator of health system performance. The ability to predict avoidable hospitalizations at the population level represents a significant advantage for health system decision-makers that could facilitate proactive intervention for ambulatory care-sensitive conditions (ACSCs). The aim of this study is to develop and validate the Avoidable Hospitalization Population Risk Tool (AvHPoRT) that will predict the 5-year risk of first avoidable hospitalization for seven ACSCs using self-reported, routinely collected population health survey data.

Methods and analysis: The derivation cohort will consist of respondents to the first 3 cycles (2000/01, 2003/04, 2005/06) of the Canadian Community Health Survey (CCHS) who are 18-74 years of age at survey administration and a hold-out data set will be used for external validation. Outcome information on avoidable hospitalizations for 5 years following the CCHS interview will be assessed through data linkage to the Discharge Abstract Database (1999/2000-2017/2018) for an estimated sample size of 394,600. Candidate predictor variables will include demographic characteristics, socioeconomic status, self-perceived health measures, health behaviors, chronic conditions, and area-based measures. Sex-specific algorithms will be developed using Weibull accelerated failure time survival models. The model will be validated both using split set cross-validation and external temporal validation split using cycles 2000-2006 compared to 2007-2012. We will assess measures of overall predictive performance (Nagelkerke R2), calibration (calibration plots), and discrimination (Harrell's concordance statistic). Development of the model will be informed by the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.

Ethics and dissemination: This study was approved by the University of Toronto Research Ethics Board. The predictive algorithm and findings from this work will be disseminated at scientific meetings and in peer-reviewed publications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信