{"title":"Single-Molecule Tracking and Super-Resolution Microscopy Unveil Actin-Driven Membrane Nanotopography Shaping Stable Integrin Adhesions in Developing Tissue.","authors":"Tianchi Chen, Grégory Giannone","doi":"10.1002/cm.21970","DOIUrl":"https://doi.org/10.1002/cm.21970","url":null,"abstract":"<p><p>Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex. Fabricated nano-structured surfaces mimicking the nanotopography observed in living tissue are able to recapitulate the formation of these adhesions in isolated muscle cells and the confinement of integrin diffusion. These results emphasize the importance of geometrical regulation of tissue morphogenesis at a single molecule level.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family.","authors":"Yici Lei, Akira Fukunaga, Hiroshi Imai, Ryosuke Yamamoto, Rieko Shimo-Kon, Shinji Kamimura, Kaoru Mitsuoka, Takako Kato-Minoura, Toshiki Yagi, Takahide Kon","doi":"10.1002/cm.21987","DOIUrl":"https://doi.org/10.1002/cm.21987","url":null,"abstract":"<p><p>Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the \"phi-particle\" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Giovanna Riparbelli, Massimo Migliorini, Giuliano Callaini
{"title":"Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses.","authors":"Maria Giovanna Riparbelli, Massimo Migliorini, Giuliano Callaini","doi":"10.1002/cm.21986","DOIUrl":"https://doi.org/10.1002/cm.21986","url":null,"abstract":"<p><p>We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"End Binding Proteins: Drivers of Cancer Progression.","authors":"Dhakshmi Sasankan, Renu Mohan","doi":"10.1002/cm.21972","DOIUrl":"https://doi.org/10.1002/cm.21972","url":null,"abstract":"<p><p>Cancer, a complex and heterogeneous disease, continues to be a major global health concern. Despite advancements in diagnostics and therapeutics, the aggressive nature of certain cancers remain a significant challenge, necessitating a deeper understanding of the underlying molecular mechanisms driving their severity and progression. Cancer severity and progression depend on cellular properties such as cell migration, cell division, cell shape changes, and intracellular transport, all of which are driven by dynamic cellular microtubules. Dynamic properties of microtubules, in turn, are regulated by an array of proteins that influence their stability and growth. Among these regulators, End Binding (EB) proteins stand out as critical orchestrators of microtubule dynamics at their growing plus ends. Beyond their fundamental role in normal cellular functions, recent research has uncovered compelling evidence linking EB proteins to the pathogenesis of various diseases, including cancer progression. As the field of cancer research advances, the clinical implication of EB proteins role in cancer severity and aggressiveness become increasingly evident. This review aims to comprehensively explore the role of microtubule-associated EB proteins in influencing the severity and aggressiveness of cancer. We also discuss the potential significance of EB as a clinical biomarker for cancer diagnosis and prognosis and as a target for therapeutic intervention.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}