Conference record. Asilomar Conference on Signals, Systems & Computers最新文献

筛选
英文 中文
Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data. 在fMRI数据中发现结构的空间模式和功能轮廓。
Conference record. Asilomar Conference on Signals, Systems & Computers Pub Date : 2008-10-01 DOI: 10.1109/ACSSC.2008.5074650
Polina Golland, Danial Lashkari, Archana Venkataraman
{"title":"Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.","authors":"Polina Golland,&nbsp;Danial Lashkari,&nbsp;Archana Venkataraman","doi":"10.1109/ACSSC.2008.5074650","DOIUrl":"https://doi.org/10.1109/ACSSC.2008.5074650","url":null,"abstract":"<p><p>We explore unsupervised, hypothesis-free methods for fMRI analysis in two different types of experiments. First, we employ clustering to identify large-scale functionally homogeneous systems. We formulate a generative mixture model, derive the EM algorithm and apply it to delineate functional systems. We also investigate spectral clustering in application to this problem and demonstrate that both methods give rise to similar partitions of the brain based on resting state fMRI data. Second, we demonstrate how to extend this approach to include information about the experimental protocol. Specifically, we formulate a mixture model in the space of possible profiles of brain response to stimuli. In both applications, our methods confirm previously known results in brain mapping and point to new research directions for exploratory analysis of fMRI data.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2008 ","pages":"1402-1409"},"PeriodicalIF":0.0,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33395856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Interactive segmentation for geographic atrophy in retinal fundus images. 视网膜眼底图像地理萎缩的交互式分割。
Conference record. Asilomar Conference on Signals, Systems & Computers Pub Date : 2008-10-01 DOI: 10.1109/ACSSC.2008.5074488
Noah Lee, R Theodore Smith, Andrew F Laine
{"title":"Interactive segmentation for geographic atrophy in retinal fundus images.","authors":"Noah Lee,&nbsp;R Theodore Smith,&nbsp;Andrew F Laine","doi":"10.1109/ACSSC.2008.5074488","DOIUrl":"https://doi.org/10.1109/ACSSC.2008.5074488","url":null,"abstract":"<p><p>Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2008 42","pages":"655-658"},"PeriodicalIF":0.0,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30098314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信