Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision最新文献

筛选
英文 中文
Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images 预测偏移量的超分辨率:用于栅格化图像的超高效超分辨率网络
Jinjin Gu, Haoming Cai, Chenyu Dong, Ruofan Zhang, Yulun Zhang, Wenming Yang, Chun Yuan
{"title":"Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images","authors":"Jinjin Gu, Haoming Cai, Chenyu Dong, Ruofan Zhang, Yulun Zhang, Wenming Yang, Chun Yuan","doi":"10.48550/arXiv.2210.04198","DOIUrl":"https://doi.org/10.48550/arXiv.2210.04198","url":null,"abstract":"Rendering high-resolution (HR) graphics brings substantial computational costs. Efficient graphics super-resolution (SR) methods may achieve HR rendering with small computing resources and have attracted extensive research interests in industry and research communities. We present a new method for real-time SR for computer graphics, namely Super-Resolution by Predicting Offsets (SRPO). Our algorithm divides the image into two parts for processing, i.e., sharp edges and flatter areas. For edges, different from the previous SR methods that take the anti-aliased images as inputs, our proposed SRPO takes advantage of the characteristics of rasterized images to conduct SR on the rasterized images. To complement the residual between HR and low-resolution (LR) rasterized images, we train an ultra-efficient network to predict the offset maps to move the appropriate surrounding pixels to the new positions. For flat areas, we found simple interpolation methods can already generate reasonable output. We finally use a guided fusion operation to integrate the sharp edges generated by the network and flat areas by the interpolation method to get the final SR image. The proposed network only contains 8,434 parameters and can be accelerated by network quantization. Extensive experiments show that the proposed SRPO can achieve superior visual effects at a smaller computational cost than the existing state-of-the-art methods.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"143 1","pages":"583-598"},"PeriodicalIF":0.0,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82897307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Attention Diversification for Domain Generalization 面向领域泛化的注意力分散
Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Mingli Song, Di Xie, Shiliang Pu
{"title":"Attention Diversification for Domain Generalization","authors":"Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Mingli Song, Di Xie, Shiliang Pu","doi":"10.48550/arXiv.2210.04206","DOIUrl":"https://doi.org/10.48550/arXiv.2210.04206","url":null,"abstract":"Convolutional neural networks (CNNs) have demonstrated gratifying results at learning discriminative features. However, when applied to unseen domains, state-of-the-art models are usually prone to errors due to domain shift. After investigating this issue from the perspective of shortcut learning, we find the devils lie in the fact that models trained on different domains merely bias to different domain-specific features yet overlook diverse task-related features. Under this guidance, a novel Attention Diversification framework is proposed, in which Intra-Model and Inter-Model Attention Diversification Regularization are collaborated to reassign appropriate attention to diverse task-related features. Briefly, Intra-Model Attention Diversification Regularization is equipped on the high-level feature maps to achieve in-channel discrimination and cross-channel diversification via forcing different channels to pay their most salient attention to different spatial locations. Besides, Inter-Model Attention Diversification Regularization is proposed to further provide task-related attention diversification and domain-related attention suppression, which is a paradigm of\"simulate, divide and assemble\": simulate domain shift via exploiting multiple domain-specific models, divide attention maps into task-related and domain-related groups, and assemble them within each group respectively to execute regularization. Extensive experiments and analyses are conducted on various benchmarks to demonstrate that our method achieves state-of-the-art performance over other competing methods. Code is available at https://github.com/hikvision-research/DomainGeneralization.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"6 1","pages":"322-340"},"PeriodicalIF":0.0,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88474156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
IDa-Det: An Information Discrepancy-aware Distillation for 1-bit Detectors IDa-Det:用于1位检测器的信息差异感知蒸馏
Sheng Xu, Yanjing Li, Bo-Wen Zeng, Teli Ma, Baochang Zhang, Xianbin Cao, Penglei Gao, Jinhu Lv
{"title":"IDa-Det: An Information Discrepancy-aware Distillation for 1-bit Detectors","authors":"Sheng Xu, Yanjing Li, Bo-Wen Zeng, Teli Ma, Baochang Zhang, Xianbin Cao, Penglei Gao, Jinhu Lv","doi":"10.48550/arXiv.2210.03477","DOIUrl":"https://doi.org/10.48550/arXiv.2210.03477","url":null,"abstract":"Knowledge distillation (KD) has been proven to be useful for training compact object detection models. However, we observe that KD is often effective when the teacher model and student counterpart share similar proposal information. This explains why existing KD methods are less effective for 1-bit detectors, caused by a significant information discrepancy between the real-valued teacher and the 1-bit student. This paper presents an Information Discrepancy-aware strategy (IDa-Det) to distill 1-bit detectors that can effectively eliminate information discrepancies and significantly reduce the performance gap between a 1-bit detector and its real-valued counterpart. We formulate the distillation process as a bi-level optimization formulation. At the inner level, we select the representative proposals with maximum information discrepancy. We then introduce a novel entropy distillation loss to reduce the disparity based on the selected proposals. Extensive experiments demonstrate IDa-Det's superiority over state-of-the-art 1-bit detectors and KD methods on both PASCAL VOC and COCO datasets. IDa-Det achieves a 76.9% mAP for a 1-bit Faster-RCNN with ResNet-18 backbone. Our code is open-sourced on https://github.com/SteveTsui/IDa-Det.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"60 1","pages":"346-361"},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88015808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
FloatingFusion: Depth from ToF and Image-stabilized Stereo Cameras FloatingFusion:来自ToF和图像稳定立体相机的深度
Andreas Meuleman, Hak-Il Kim, J. Tompkin, Min H. Kim
{"title":"FloatingFusion: Depth from ToF and Image-stabilized Stereo Cameras","authors":"Andreas Meuleman, Hak-Il Kim, J. Tompkin, Min H. Kim","doi":"10.1007/978-3-031-19769-7_35","DOIUrl":"https://doi.org/10.1007/978-3-031-19769-7_35","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"36 1","pages":"602-618"},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84319181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Differentiable Raycasting for Self-supervised Occupancy Forecasting 自监督入住率预测的可微投射
Tarasha Khurana, Peiyun Hu, Achal Dave, Jason Ziglar, David Held, Deva Ramanan
{"title":"Differentiable Raycasting for Self-supervised Occupancy Forecasting","authors":"Tarasha Khurana, Peiyun Hu, Achal Dave, Jason Ziglar, David Held, Deva Ramanan","doi":"10.48550/arXiv.2210.01917","DOIUrl":"https://doi.org/10.48550/arXiv.2210.01917","url":null,"abstract":"Motion planning for safe autonomous driving requires learning how the environment around an ego-vehicle evolves with time. Ego-centric perception of driveable regions in a scene not only changes with the motion of actors in the environment, but also with the movement of the ego-vehicle itself. Self-supervised representations proposed for large-scale planning, such as ego-centric freespace, confound these two motions, making the representation difficult to use for downstream motion planners. In this paper, we use geometric occupancy as a natural alternative to view-dependent representations such as freespace. Occupancy maps naturally disentangle the motion of the environment from the motion of the ego-vehicle. However, one cannot directly observe the full 3D occupancy of a scene (due to occlusion), making it difficult to use as a signal for learning. Our key insight is to use differentiable raycasting to\"render\"future occupancy predictions into future LiDAR sweep predictions, which can be compared with ground-truth sweeps for self-supervised learning. The use of differentiable raycasting allows occupancy to emerge as an internal representation within the forecasting network. In the absence of groundtruth occupancy, we quantitatively evaluate the forecasting of raycasted LiDAR sweeps and show improvements of upto 15 F1 points. For downstream motion planners, where emergent occupancy can be directly used to guide non-driveable regions, this representation relatively reduces the number of collisions with objects by up to 17% as compared to freespace-centric motion planners.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"61 1","pages":"353-369"},"PeriodicalIF":0.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89246636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution 从人脸到自然图像:学习盲图像超分辨率的真实退化
Xiaoming Li, Chaofeng Chen, Xianhui Lin, W. Zuo, Lei Zhang
{"title":"From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution","authors":"Xiaoming Li, Chaofeng Chen, Xianhui Lin, W. Zuo, Lei Zhang","doi":"10.48550/arXiv.2210.00752","DOIUrl":"https://doi.org/10.48550/arXiv.2210.00752","url":null,"abstract":"How to design proper training pairs is critical for super-resolving real-world low-quality (LQ) images, which suffers from the difficulties in either acquiring paired ground-truth high-quality (HQ) images or synthesizing photo-realistic degraded LQ observations. Recent works mainly focus on modeling the degradation with handcrafted or estimated degradation parameters, which are however incapable to model complicated real-world degradation types, resulting in limited quality improvement. Notably, LQ face images, which may have the same degradation process as natural images, can be robustly restored with photo-realistic textures by exploiting their strong structural priors. This motivates us to use the real-world LQ face images and their restored HQ counterparts to model the complex real-world degradation (namely ReDegNet), and then transfer it to HQ natural images to synthesize their realistic LQ counterparts. By taking these paired HQ-LQ face images as inputs to explicitly predict the degradation-aware and content-independent representations, we could control the degraded image generation, and subsequently transfer these degradation representations from face to natural images to synthesize the degraded LQ natural images. Experiments show that our ReDegNet can well learn the real degradation process from face images. The restoration network trained with our synthetic pairs performs favorably against SOTAs. More importantly, our method provides a new way to handle the real-world complex scenarios by learning their degradation representations from the facial portions, which can be used to significantly improve the quality of non-facial areas. The source code is available at https://github.com/csxmli2016/ReDegNet.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"56 1","pages":"376-392"},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79827963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Anatomy-Aware Contrastive Representation Learning for Fetal Ultrasound. 胎儿超声的解剖学感知对比表示学习。
Zeyu Fu, Jianbo Jiao, Robail Yasrab, Lior Drukker, Aris T Papageorghiou, J Alison Noble
{"title":"Anatomy-Aware Contrastive Representation Learning for Fetal Ultrasound.","authors":"Zeyu Fu, Jianbo Jiao, Robail Yasrab, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-031-25066-8_23","DOIUrl":"10.1007/978-3-031-25066-8_23","url":null,"abstract":"<p><p>Self-supervised contrastive representation learning offers the advantage of learning meaningful visual representations from unlabeled medical datasets for transfer learning. However, applying current contrastive learning approaches to medical data without considering its domain-specific anatomical characteristics may lead to visual representations that are inconsistent in appearance and semantics. In this paper, we propose to improve visual representations of medical images via anatomy-aware contrastive learning (AWCL), which incorporates anatomy information to augment the positive/negative pair sampling in a contrastive learning manner. The proposed approach is demonstrated for automated fetal ultrasound imaging tasks, enabling the positive pairs from the same or different ultrasound scans that are anatomically similar to be pulled together and thus improving the representation learning. We empirically investigate the effect of inclusion of anatomy information with coarse- and fine-grained granularity, for contrastive learning and find that learning with fine-grained anatomy information which preserves intra-class difference is more effective than its counterpart. We also analyze the impact of anatomy ratio on our AWCL framework and find that using more distinct but anatomically similar samples to compose positive pairs results in better quality representations. Extensive experiments on a large-scale fetal ultrasound dataset demonstrate that our approach is effective for learning representations that transfer well to three clinical downstream tasks, and achieves superior performance compared to ImageNet supervised and the current state-of-the-art contrastive learning methods. In particular, AWCL outperforms ImageNet supervised method by 13.8% and state-of-the-art contrastive-based method by 7.1% on a cross-domain segmentation task. The code is available at https://github.com/JianboJiao/AWCL.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"2022 ","pages":"422-436"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614575/pdf/EMS176131.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9538765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Versatile Uses of Partial Distance Correlation in Deep Learning. 论深度学习中部分距离相关性的多种用途
Xingjian Zhen, Zihang Meng, Rudrasis Chakraborty, Vikas Singh
{"title":"On the Versatile Uses of Partial Distance Correlation in Deep Learning.","authors":"Xingjian Zhen, Zihang Meng, Rudrasis Chakraborty, Vikas Singh","doi":"10.1007/978-3-031-19809-0_19","DOIUrl":"10.1007/978-3-031-19809-0_19","url":null,"abstract":"<p><p>Comparing the functional behavior of neural network models, whether it is a single network over time or two (or more networks) during or post-training, is an essential step in understanding what they are learning (and what they are not), and for identifying strategies for regularization or efficiency improvements. Despite recent progress, e.g., comparing vision transformers to CNNs, systematic comparison of function, especially across different networks, remains difficult and is often carried out layer by layer. Approaches such as canonical correlation analysis (CCA) are applicable in principle, but have been sparingly used so far. In this paper, we revisit a (less widely known) from statistics, called distance correlation (and its partial variant), designed to evaluate correlation between feature spaces of different dimensions. We describe the steps necessary to carry out its deployment for large scale models - this opens the door to a surprising array of applications ranging from conditioning one deep model w.r.t. another, learning disentangled representations as well as optimizing diverse models that would directly be more robust to adversarial attacks. Our experiments suggest a versatile regularizer (or constraint) with many advantages, which avoids some of the common difficulties one faces in such analyses .</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"13686 ","pages":"327-346"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228573/pdf/nihms-1894550.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Target-absent Human Attention. 目标缺失的人类注意力。
Zhibo Yang, Sounak Mondal, Seoyoung Ahn, Gregory Zelinsky, Minh Hoai, Dimitris Samaras
{"title":"Target-absent Human Attention.","authors":"Zhibo Yang, Sounak Mondal, Seoyoung Ahn, Gregory Zelinsky, Minh Hoai, Dimitris Samaras","doi":"10.1007/978-3-031-19772-7_4","DOIUrl":"https://doi.org/10.1007/978-3-031-19772-7_4","url":null,"abstract":"<p><p>The prediction of human gaze behavior is important for building human-computer interaction systems that can anticipate the user's attention. Computer vision models have been developed to predict the fixations made by people as they search for target objects. But what about when the target is not in the image? Equally important is to know how people search when they cannot find a target, and when they would stop searching. In this paper, we propose a data-driven computational model that addresses the search-termination problem and predicts the scanpath of search fixations made by people searching for targets that do not appear in images. We model visual search as an imitation learning problem and represent the internal knowledge that the viewer acquires through fixations using a novel state representation that we call <i>Foveated Feature Maps (FFMs)</i>. FFMs integrate a simulated foveated retina into a pretrained ConvNet that produces an in-network feature pyramid, all with minimal computational overhead. Our method integrates FFMs as the state representation in inverse reinforcement learning. Experimentally, we improve the state of the art in predicting human target-absent search behavior on the COCO-Search18 dataset. Code is available at: https://github.com/cvlab-stonybrook/Target-absent-Human-Attention.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"13664 ","pages":"52-68"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images. CryoAI:从真实低温电子显微镜图像初始重建三维分子卷的摊销推断姿势。
Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane, Daniel Ratner, Mike Dunne, Gordon Wetzstein
{"title":"CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images.","authors":"Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane, Daniel Ratner, Mike Dunne, Gordon Wetzstein","doi":"10.1007/978-3-031-19803-8_32","DOIUrl":"10.1007/978-3-031-19803-8_32","url":null,"abstract":"<p><p>Cryo-electron microscopy (cryo-EM) has become a tool of fundamental importance in structural biology, helping us understand the basic building blocks of life. The algorithmic challenge of cryo-EM is to jointly estimate the unknown 3D poses and the 3D electron scattering potential of a biomolecule from millions of extremely noisy 2D images. Existing reconstruction algorithms, however, cannot easily keep pace with the rapidly growing size of cryo-EM datasets due to their high computational and memory cost. We introduce cryoAI, an <i>ab initio</i> reconstruction algorithm for homogeneous conformations that uses direct gradient-based optimization of particle poses and the electron scattering potential from single-particle cryo-EM data. CryoAI combines a learned encoder that predicts the poses of each particle image with a physics-based decoder to aggregate each particle image into an implicit representation of the scattering potential volume. This volume is stored in the Fourier domain for computational efficiency and leverages a modern coordinate network architecture for memory efficiency. Combined with a symmetrized loss function, this framework achieves results of a quality on par with state-of-the-art cryo-EM solvers for both simulated and experimental data, one order of magnitude faster for large datasets and with significantly lower memory requirements than existing methods.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"13681 ","pages":"540-557"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897229/pdf/nihms-1824058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10718776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信