Computational systems bioinformatics. Computational Systems Bioinformatics Conference最新文献

筛选
英文 中文
Voting algorithms for the motif finding problem. 基序查找问题的投票算法。
Xiaowen Liu, Bin Ma, Lusheng Wang
{"title":"Voting algorithms for the motif finding problem.","authors":"Xiaowen Liu, Bin Ma, Lusheng Wang","doi":"10.1142/9781848162648_0004","DOIUrl":"https://doi.org/10.1142/9781848162648_0004","url":null,"abstract":"UNLABELLED Finding motifs in many sequences is an important problem in computational biology, especially in identification of regulatory motifs in DNA sequences. Let c be a motif sequence. Given a set of sequences, each is planted with a mutated version of c at an unknown position, the motif finding problem is to find these planted motifs and the original c. In this paper, we study the VM model of the planted motif problem, which is proposed by Pevzner and Sze. We give a simple Selecting One Voting algorithm and a more powerful Selecting k Voting algorithm. When the length of motif and the number of input sequences are large enough, we prove that the two algorithms can find the unknown motif consensus with high probability. In the proof, we show why a large number of input sequences is so important for finding motifs, which is believed by most researchers. Experimental results on simulated data also support the claim. Selecting k Voting algorithm is powerful, but computational intensive. To speed up the algorithm, we propose a progressive filtering algorithm, which improves the running time significantly and has good accuracy in finding motifs. Our experimental results show that Selecting k Voting algorithm with progressive filtering performs very well in practice and it outperforms some best known algorithms. AVAILABILITY The software is available upon request.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"37-47"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64001431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ORFome assembly approach to metagenomics sequences analysis. ORFome组装方法用于宏基因组序列分析。
Yuzhen Ye, Haixu Tang
{"title":"An ORFome assembly approach to metagenomics sequences analysis.","authors":"Yuzhen Ye,&nbsp;Haixu Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Metagenomics is an emerging methodology for the direct genomic analysis of a mixed community of uncultured microorganisms. The current analyses of metagenomics data largely rely on the computational tools originally designed for microbial genomics projects. The challenge of assembling metagenomic sequences arises mainly from the short reads and the high species complexity of the community. Alternatively, individual (short) reads will be searched directly against databases of known genes (or proteins) to identify homologous sequences. The latter approach may have low sensitivity and specificity in identifying homologous sequences, which may further bias the subsequent diversity analysis. In this paper, we present a novel approach to metagenomic data analysis, called Metagenomic ORFome Assembly (MetaORFA). The whole computational framework consists of three steps. Each read from a metagenomics project will first be annotated with putative open reading frames (ORFs) that likely encode proteins. Next, the predicted ORFs are assembled into a collection of peptides using an EULER assembly method. Finally, the assembled peptides (i.e., ORFome) are used for database searching of homologs and subsequent diversity analysis. We applied MetaORFA approach to several metagenomics datasets with low coverage short reads. The results show that MetaORFA can produce long peptides even when the sequence coverage of reads is extremely low. Hence, the ORFome assembly significantly increased the sensitivity of homology searching, and may potentially improve the diversity analysis of the metagenomic data. This improvement is especially useful for the metagenomic projects when the genome assembly does not work because of the low sequence coverage.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"3-13"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28411958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic coding based quantum genetic algorithm for multiple sequence alignment. 基于概率编码的多序列比对量子遗传算法。
Hongwei Huo, Qiaoluan Xie, Xubang Shen, Vojislav Stojkovic
{"title":"A probabilistic coding based quantum genetic algorithm for multiple sequence alignment.","authors":"Hongwei Huo,&nbsp;Qiaoluan Xie,&nbsp;Xubang Shen,&nbsp;Vojislav Stojkovic","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the quantum algorithm lowers the cost of overall running time.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"15-26"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28336169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns. 基于hausdorff的NOE分配算法,利用剩余偶极偶联和旋转体模式确定蛋白质骨架。
Jianyang Zeng, Chittaranjan Tripathy, Pei Zhou, Bruce R Donald
{"title":"A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.","authors":"Jianyang Zeng,&nbsp;Chittaranjan Tripathy,&nbsp;Pei Zhou,&nbsp;Bruce R Donald","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>High-throughput structure determination based on solution Nuclear Magnetic Resonance (NMR) spectroscopy plays an important role in structural genomics. One of the main bottlenecks in NMR structure determination is the interpretation of NMR data to obtain a sufficient number of accurate distance restraints by assigning nuclear Overhauser effect (NOE) spectral peaks to pairs of protons. The difficulty in automated NOE assignment mainly lies in the ambiguities arising both from the resonance degeneracy of chemical shifts and from the uncertainty due to experimental errors in NOE peak positions. In this paper we present a novel NOE assignment algorithm, called HAusdorff-based NOE Assignment (HANA), that starts with a high-resolution protein backbone computed using only two residual dipolar couplings (RDCs) per residue, employs a Hausdorff-based pattern matching technique to deduce similarity between experimental and back-computed NOE spectra for each rotamer from a statistically diverse library, and drives the selection of optimal position-specific rotamers for filtering ambiguous NOE assignments. Our algorithm runs in time O(tn3 + tn log t), where t is the maximum number of rotamers per residue and n is the size of the protein. Application of our algorithm on biological NMR data for three proteins, namely, human ubiquitin, the zinc finger domain of the human DNA Y-polymerase Eta (pol eta) and the human Set2-Rpb1 interacting domain (hSRI) demonstrates that our algorithm overcomes spectral noise to achieve more than 90% assignment accuracy. Additionally, the final structures calculated using our automated NOE assignments have backbone RMSD < 1.7 A and all-heavy-atom RMSD < 2.5 A from reference structures that were determined either by X-ray crystallography or traditional NMR approaches. These results show that our NOE assignment algorithm can be successfully applied to protein NMR spectra to obtain high-quality structures.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"169-81"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28337242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the accurate construction of consensus genetic maps. 论共识遗传图谱的准确构建。
Yonghui Wu, T. Close, S. Lonardi
{"title":"On the accurate construction of consensus genetic maps.","authors":"Yonghui Wu, T. Close, S. Lonardi","doi":"10.1142/9781848162648_0025","DOIUrl":"https://doi.org/10.1142/9781848162648_0025","url":null,"abstract":"We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The problem is to build a consensus map, which includes and is consistent with all (or, the vast majority of) the markers in the individual maps. When markers in the input maps have ordering conflicts, the resulting consensus map will contain cycles. We formulate the problem of resolving cycles in a combinatorial optimization framework, which in turn is expressed as an integer linear program. A faster approximation algorithm is proposed, and an additional speed-up heuristic is developed. According to an extensive set of experimental results, our tool is consistently better than JOINMAP, both in terms of accuracy and running time.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"285-96"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64003957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. 利用线性系统与不相邻集合数据结构,从有缺失数据的血统中高效推断单倍型。
Xin Li, Jing Li
{"title":"Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures.","authors":"Xin Li, Jing Li","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We study the haplotype inference problem from pedigree data under the zero recombination assumption, which is well supported by real data for tightly linked markers (i.e., single nucleotide polymorphisms (SNPs)) over a relatively large chromosome segment. We solve the problem in a rigorous mathematical manner by formulating genotype constraints as a linear system of inheritance variables. We then utilize disjoint-set structures to encode connectivity information among individuals, to detect constraints from genotypes, and to check consistency of constraints. On a tree pedigree without missing data, our algorithm can output a general solution as well as the number of total specific solutions in a nearly linear time O (mn x alpha(n)), where m is the number of loci, n is the number of individuals and alpha is the inverse Ackermann function, which is a further improvement over existing ones. We also extend the idea to looped pedigrees and pedigrees with missing data by considering existing (partial) constraints on inheritance variables. The algorithm has been implemented in C++ and will be incorporated into our PedPhase package. Experimental results show that it can correctly identify all 0-recombinant solutions with great efficiency. Comparisons with other two popular algorithms show that the proposed algorithm achieves 10 to 10(5)-fold improvements over a variety of parameter settings. The experimental study also provides empirical evidences on the complexity bounds suggested by theoretical analysis.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"297-308"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326667/pdf/nihms231595.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28336040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proceedings of Computational Systems Bioinformatics 2008. August 26-29, 2008. Palo Alto, California, USA. 计算系统生物信息学学报2008。2008年8月26日至29日。美国加州帕洛阿尔托。
{"title":"Proceedings of Computational Systems Bioinformatics 2008. August 26-29, 2008. Palo Alto, California, USA.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"3-340"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28369404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving homology models for protein-ligand binding sites. 改进蛋白质-配体结合位点的同源性模型。
Chris Kauffman, Huzefa Rangwala, George Karypis
{"title":"Improving homology models for protein-ligand binding sites.","authors":"Chris Kauffman,&nbsp;Huzefa Rangwala,&nbsp;George Karypis","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In order to improve the prediction of protein-ligand binding sites through homology modeling, we incorporate knowledge of the binding residues into the modeling framework. Residues are identified as binding or nonbinding based on their true labels as well as labels predicted from structure and sequence. The sequence predictions were made using a support vector machine framework which employs a sophisticated window-based kernel. Binding labels are used with a very sensitive sequence alignment method to align the target and template. Relevant parameters governing the alignment process are searched for optimal values. Based on our results, homology models of the binding site can be improved if a priori knowledge of the binding residues is available. For target-template pairs with low sequence identity and high structural diversity our sequence-based prediction method provided sufficient information to realize this improvement.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"211-22"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28337724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing secondary structure profiles for fast ncRNA identification. 设计用于ncRNA快速鉴定的二级结构谱。
Yanni Sun, J. Buhler
{"title":"Designing secondary structure profiles for fast ncRNA identification.","authors":"Yanni Sun, J. Buhler","doi":"10.1142/9781848162648_0013","DOIUrl":"https://doi.org/10.1142/9781848162648_0013","url":null,"abstract":"Detecting non-coding RNAs (ncRNAs) in genomic DNA is an important part of annotation. However, the most widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high computational cost when used for search. This cost can be reduced by using a filter to exclude sequence that is unlikely to contain the ncRNA of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient filter that can detect nearly all ncRNA instances while excluding most irrelevant sequences remains challenging. This work proposes a systematic procedure to convert a CM for an ncRNA family to a secondary structure profile (SSP), which augments a conservation profile with secondary structure information but can still be efficiently scanned against long sequences. We use dynamic programming to estimate an SSP's sensitivity and FP rate, yielding an efficient, fully automated filter design algorithm. Our experiments demonstrate that designed SSP filters can achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families, including those with and without strong sequence conservation. For highly structured ncRNA families, including secondary structure conservation yields better performance than using primary sequence conservation alone.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"145-56"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64003418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
MSDash: mass spectrometry database and search. 质谱数据库和搜索。
Zhan Wu, G. Lajoie, B. Ma
{"title":"MSDash: mass spectrometry database and search.","authors":"Zhan Wu, G. Lajoie, B. Ma","doi":"10.1142/9781848162648_0006","DOIUrl":"https://doi.org/10.1142/9781848162648_0006","url":null,"abstract":"Along with the wide application of mass spectrometry in proteomics, more and more mass spectrometry data are becoming publicly available. Several public mass spectrometry data repositories have been built on the Internet. However, most of these repositories are devoid of effective searching methods. In this paper we describe a new mass spectrometry data library, and a novel method to efficiently index and search in the library for spectra that are similar to a query spectrum. A public online server have been set up and demonstrated outstanding speed and scalability of our methods. Together with the mass spectrometry library, our searching method can improve the protein identification confidence by comparing a spectrum with the ones that are already characterized in the database. The searching method can also be used alone to cluster the similar spectra in a mass spectrometry dataset together, in order to to improve the speed and accuracy of the protein identification or quantification.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"63-71"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64003482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信