Designing secondary structure profiles for fast ncRNA identification.

Yanni Sun, J. Buhler
{"title":"Designing secondary structure profiles for fast ncRNA identification.","authors":"Yanni Sun, J. Buhler","doi":"10.1142/9781848162648_0013","DOIUrl":null,"url":null,"abstract":"Detecting non-coding RNAs (ncRNAs) in genomic DNA is an important part of annotation. However, the most widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high computational cost when used for search. This cost can be reduced by using a filter to exclude sequence that is unlikely to contain the ncRNA of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient filter that can detect nearly all ncRNA instances while excluding most irrelevant sequences remains challenging. This work proposes a systematic procedure to convert a CM for an ncRNA family to a secondary structure profile (SSP), which augments a conservation profile with secondary structure information but can still be efficiently scanned against long sequences. We use dynamic programming to estimate an SSP's sensitivity and FP rate, yielding an efficient, fully automated filter design algorithm. Our experiments demonstrate that designed SSP filters can achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families, including those with and without strong sequence conservation. For highly structured ncRNA families, including secondary structure conservation yields better performance than using primary sequence conservation alone.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"145-56"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848162648_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Detecting non-coding RNAs (ncRNAs) in genomic DNA is an important part of annotation. However, the most widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high computational cost when used for search. This cost can be reduced by using a filter to exclude sequence that is unlikely to contain the ncRNA of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient filter that can detect nearly all ncRNA instances while excluding most irrelevant sequences remains challenging. This work proposes a systematic procedure to convert a CM for an ncRNA family to a secondary structure profile (SSP), which augments a conservation profile with secondary structure information but can still be efficiently scanned against long sequences. We use dynamic programming to estimate an SSP's sensitivity and FP rate, yielding an efficient, fully automated filter design algorithm. Our experiments demonstrate that designed SSP filters can achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families, including those with and without strong sequence conservation. For highly structured ncRNA families, including secondary structure conservation yields better performance than using primary sequence conservation alone.
设计用于ncRNA快速鉴定的二级结构谱。
检测基因组DNA中的非编码rna (ncRNAs)是基因组注释的重要组成部分。然而,最广泛使用的ncRNA家族建模工具,协方差模型(CM),在用于搜索时会产生很高的计算成本。这种成本可以通过使用过滤器来排除不太可能包含感兴趣的ncRNA的序列,仅在可能强烈匹配的地方应用CM来降低。尽管最近取得了一些进展,但设计一种能够检测几乎所有ncRNA实例并排除大多数不相关序列的有效过滤器仍然具有挑战性。这项工作提出了一个系统的程序,将ncRNA家族的CM转换为二级结构剖面(SSP),这增加了二级结构信息的保守剖面,但仍然可以有效地扫描长序列。我们使用动态规划来估计SSP的灵敏度和FP率,从而产生一个高效的、全自动的滤波器设计算法。我们的实验表明,设计的SSP滤波器可以在对各种ncRNA家族(包括具有和不具有强序列保守性的ncRNA家族)保持高灵敏度的同时,比未过滤的CM搜索获得显著的加速。对于高度结构化的ncRNA家族,包括二级结构保守比单独使用一级序列保守产生更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信