Chemistry methods : new approaches to solving problems in chemistry最新文献

筛选
英文 中文
Investigation of Carbonate Substitution in Hydroxyapatite by Combining Solid-state NMR and DFT Calculations 固体NMR和DFT计算相结合研究羟基磷灰石中碳酸盐的取代
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-06-09 DOI: 10.1002/cmtd.202300007
Dr. Yangyang Su, Dr. Flavio Siro Brigiano, Dr. Ivan Petit, Dr. César Leroy, Prof. Christian Bonhomme, Dr. Florence Babonneau, Prof. Frederik Tielens, Prof. Christel Gervais
{"title":"Investigation of Carbonate Substitution in Hydroxyapatite by Combining Solid-state NMR and DFT Calculations","authors":"Dr. Yangyang Su,&nbsp;Dr. Flavio Siro Brigiano,&nbsp;Dr. Ivan Petit,&nbsp;Dr. César Leroy,&nbsp;Prof. Christian Bonhomme,&nbsp;Dr. Florence Babonneau,&nbsp;Prof. Frederik Tielens,&nbsp;Prof. Christel Gervais","doi":"10.1002/cmtd.202300007","DOIUrl":"10.1002/cmtd.202300007","url":null,"abstract":"<p>Biological apatites (main constituent of natural bones) correspond to non-stoichiometric hydroxyapatite HAp, presenting a large variety of ions as substituents (CO<sub>3</sub><sup>2−</sup>, F<sup>−</sup>, SiO<sub>4</sub><sup>4−</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>…). The precise location and configuration of ionic substitutes in the HAp matrix are generally difficult to identify and characterize. This contribution details the structural characterization based on NMR data of a particular case of hydroxyapatite substitution by carbonates. For this purpose, all substitution mechanisms proposed to our knowledge in the literature are modeled by DFT and the corresponding calculated NMR parameters allowed to propose or confirm some interpretations of a certain number of experimental observations to rationalize the dependencies of the <sup>13</sup>C chemical shift and energy on these structural parameters. The presented results open the way for a fast interpretation of <sup>13</sup>C NMR experiments on defective HAp materials and will allow to predict the most stable arrangement of CO<sub>3</sub><sup>2−</sup> for a given family of defects.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48744071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: (Chem. Methods 6/2023) 封面特写:(化学方法6/2023)
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-06-06 DOI: 10.1002/cmtd.202300031
{"title":"Cover Feature: (Chem. Methods 6/2023)","authors":"","doi":"10.1002/cmtd.202300031","DOIUrl":"10.1002/cmtd.202300031","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42282668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Chem. Methods 5/2023) 封面图片:(化学方法5/2023)
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-05-23 DOI: 10.1002/cmtd.202300025
{"title":"Cover Picture: (Chem. Methods 5/2023)","authors":"","doi":"10.1002/cmtd.202300025","DOIUrl":"https://doi.org/10.1002/cmtd.202300025","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50142116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H NMR Elucidation of Observed Stable Sugar-NaCl-water Complexes in Aqueous Solution** 水溶液中观察到的稳定糖- NaCl -水配合物的1h NMR解析**
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-04-19 DOI: 10.1002/cmtd.202200063
Gan Zhu, Hui Li, Prof. Dr. Yiqun Li, Dr. Liuqun Gu
{"title":"1H NMR Elucidation of Observed Stable Sugar-NaCl-water Complexes in Aqueous Solution**","authors":"Gan Zhu,&nbsp;Hui Li,&nbsp;Prof. Dr. Yiqun Li,&nbsp;Dr. Liuqun Gu","doi":"10.1002/cmtd.202200063","DOIUrl":"10.1002/cmtd.202200063","url":null,"abstract":"<p>The solvation of sugars in aqueous media matters in the understanding of biological systems and carbohydrate transformations. The presence of NaCl is known to perturb hydrogen bonding of sugar hydrates, however, direct evidence to elucidate mechanism at atom level is very rare even though the “NaCl Effect” was well known in biomass transformations for chemicals/biofuels. Here we report experimental evidences of a clear staircase-like correlation between induced <sup>1</sup>H NMR changes of D-glucose/fructose with concentration of NaCl aqueous solution at room temperature; and two stable bonding status was observed in the system. HDO in sugar/NaCl aqueous solution as a “dynamic” reference is a key to enable decoupling the global salt effect in this <sup>1</sup>H NMR investigation of NaCl-saccharide interaction. Via a further half-quantitative study, three structures of stable sugar-NaCl-water complexes were mapped for the first time in tackling the NaCl-monosaccharide interaction at atomic level in an aqueous solution. Based on the maximum of induced <sup>1</sup>H NMR shifts, an ideal NaCl usage was proposed.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47828132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
13C and 15N Benchtop NMR Detection of Metabolites via Relayed Hyperpolarization** 通过弛豫超极化检测代谢产物的13C和15N Benchtop NMR**
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-04-13 DOI: 10.1002/cmtd.202200075
Dr. Seyma Alcicek, Erik Van Dyke, Jingyan Xu, Prof. Szymon Pustelny, Dr. Danila A. Barskiy
{"title":"13C and 15N Benchtop NMR Detection of Metabolites via Relayed Hyperpolarization**","authors":"Dr. Seyma Alcicek,&nbsp;Erik Van Dyke,&nbsp;Jingyan Xu,&nbsp;Prof. Szymon Pustelny,&nbsp;Dr. Danila A. Barskiy","doi":"10.1002/cmtd.202200075","DOIUrl":"10.1002/cmtd.202200075","url":null,"abstract":"&lt;p&gt;Parahydrogen-based nuclear spin hyperpolarization allows various magnetic-resonance applications, and it is particularly attractive because of its technical simplicity, low cost, and ability to quickly (in seconds) produce large volumes of hyperpolarized material. Although many parahydrogen-based techniques have emerged, some of them remain unexplored due to the lack of careful optimization studies. In this work, we investigate and optimize a novel parahydrogen-induced polarization (PHIP) technique that relies on proton exchange referred to below as PHIP-relay. An INEPT (insensitive nuclei enhanced by polarization transfer) sequence is employed to transfer polarization from hyperpolarized protons to heteronuclei (&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;15&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;annotation&gt;\u0000 ${^{15} }$\u0000&lt;/annotation&gt;\u0000 &lt;/semantics&gt;\u0000 &lt;/math&gt;\u0000N and &lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;13&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;annotation&gt;\u0000 ${^{13} }$\u0000&lt;/annotation&gt;\u0000 &lt;/semantics&gt;\u0000 &lt;/math&gt;\u0000C) and nuclear signals are detected using benchtop NMR spectrometers (1 T and 1.4 T, respectively). We demonstrate the applicability of the PHIP-relay technique for hyperpolarization of a wide range of biochemicals by examining such key metabolites as urea, ammonium, glucose, amino acid glycine, and a drug precursor benzamide. By optimizing chemical and NMR parameters of the PHIP-relay, we achieve a 17,100-fold enhancement of &lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;15&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;annotation&gt;\u0000 ${^{15} }$\u0000&lt;/annotation&gt;\u0000 &lt;/semantics&gt;\u0000 &lt;/math&gt;\u0000N signal of [&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;13&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;annotation&gt;\u0000 ${^{13} }$\u0000&lt;/annotation&gt;\u0000 &lt;/semantics&gt;\u0000 &lt;/math&gt;\u0000C, &lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;15&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;annotation&gt;\u0000 ${^{15} }$\u0000&lt;/annotation&gt;\u0000 &lt;/semantics&gt;\u0000 &lt;/math&gt;\u0000N&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;annota","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44511949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Bright Surprise: Live-Cell Labeling with Negatively Charged Fluorescent Probes based on Disulfonated Rhodamines and HaloTag 一个惊喜:基于二磺化若丹明和HaloTag的带负电荷荧光探针标记活细胞
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-04-13 DOI: 10.1002/cmtd.202200076
Dr. Dojin Kim, Dr. Stefan Stoldt, Dr. Michael Weber, Prof. Stefan Jakobs, Dr. Vladimir N. Belov, Prof. Stefan W. Hell
{"title":"A Bright Surprise: Live-Cell Labeling with Negatively Charged Fluorescent Probes based on Disulfonated Rhodamines and HaloTag","authors":"Dr. Dojin Kim,&nbsp;Dr. Stefan Stoldt,&nbsp;Dr. Michael Weber,&nbsp;Prof. Stefan Jakobs,&nbsp;Dr. Vladimir N. Belov,&nbsp;Prof. Stefan W. Hell","doi":"10.1002/cmtd.202200076","DOIUrl":"10.1002/cmtd.202200076","url":null,"abstract":"<p>Disulfonated rhodamines are photostable and bright dyes widely used in life science and optical microscopy. However, di-sulfonated dyes were considered cell impermeable and not applicable in living cells. We challenged this assumption with 5 most popular rhodamines (Rho) having two carboxylic acid residues, versatile sulfonation patterns and emitting green (AS488), yellow (Rho530), orange (Rho565) and red (Rho590 and STAR RED) light. The probes comprising one rhodamine entity and a HaloTag<sup>TM</sup> amine (O2) ligand (x) were prepared and applied for labeling of living, <i>Vimentin-Halo</i> (<i>VIM-Halo</i>) expressing U-2 OS cells. Surprisingly, we observed specific and bright staining with simplest compounds Rho590-x, Rho565-x and Rho530-x bearing two negative charges; they performed well also in stimulated emission depletion (STED) microscopy. Specific staining and red shifts in absorption and emission bands were observed with other probes having one negative charge; they were prepared by native chemical ligation and esterification.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49367256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cover Picture: (Chem. Methods 4/2023) 封面图片:(化学方法4/2023)
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-04-03 DOI: 10.1002/cmtd.202300018
{"title":"Cover Picture: (Chem. Methods 4/2023)","authors":"","doi":"10.1002/cmtd.202300018","DOIUrl":"https://doi.org/10.1002/cmtd.202300018","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Use of a Real-time In-situ Monitoring Tool for Electrochemical Advanced Oxidation Processes 电化学高级氧化过程实时原位监测工具的开发和使用
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-03-30 DOI: 10.1002/cmtd.202300014
Chelsea M. Schroeder, Arturo León Sandoval, Kristiane K. Ohlhorst, Dr. Nicholas E. Leadbeater
{"title":"Development and Use of a Real-time In-situ Monitoring Tool for Electrochemical Advanced Oxidation Processes","authors":"Chelsea M. Schroeder,&nbsp;Arturo León Sandoval,&nbsp;Kristiane K. Ohlhorst,&nbsp;Dr. Nicholas E. Leadbeater","doi":"10.1002/cmtd.202300014","DOIUrl":"10.1002/cmtd.202300014","url":null,"abstract":"<p>An apparatus for real-time in-situ monitoring of electrochemical advanced oxidation processes using visible spectrophotometry has been developed. Central to the design is a 3D-printed sleeve that interfaces commercially available electrochemical and spectrophotometry units. Using the anodic oxidation of Acid Orange 7 as a test bed, the apparatus has been used for probing the impact of varying electrode composition, current density, electrolyte concentration, and stirring speed on the rate of decolorization. In addition, the unit was used to prove that decolorization can continue after electrolysis has been stopped, thereby showing the inherent value of real-time monitoring. Given that a significant challenge in the field of advanced oxidation processes is the inability to compare different reported systems, our approach, using commercially available equipment and a printable interface may open avenues for more standardized data collection.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49187345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction 磁性过氧化物酶纳米酶为微塑料去除和解构做准备
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-03-30 DOI: 10.1002/cmtd.202300012
Dr. Ansari Palliyarayil, Rajani Kumar Borah, Dr. Amit A. Vernekar
{"title":"Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction","authors":"Dr. Ansari Palliyarayil,&nbsp;Rajani Kumar Borah,&nbsp;Dr. Amit A. Vernekar","doi":"10.1002/cmtd.202300012","DOIUrl":"10.1002/cmtd.202300012","url":null,"abstract":"<p>Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (<i>Angew. Chem. Int. Ed</i>. <b>2022</b>, <i>61</i>, e202212013), where it has been shown that integrating the magnetic property of bare Fe<sub>3</sub>O<sub>4</sub> nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47125378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction Impurity Prediction using a Data Mining Approach** 用数据挖掘方法预测反应杂质**
Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2023-03-27 DOI: 10.1002/cmtd.202200062
Adarsh Arun, Dr. Zhen Guo, Dr. Simon Sung, Prof. Alexei A. Lapkin
{"title":"Reaction Impurity Prediction using a Data Mining Approach**","authors":"Adarsh Arun,&nbsp;Dr. Zhen Guo,&nbsp;Dr. Simon Sung,&nbsp;Prof. Alexei A. Lapkin","doi":"10.1002/cmtd.202200062","DOIUrl":"10.1002/cmtd.202200062","url":null,"abstract":"<p>Automated prediction of reaction impurities is useful in early-stage reaction development, synthesis planning and optimization. Existing reaction predictors are catered towards <i>main</i> product prediction, and are often black-box, making it difficult to troubleshoot erroneous outcomes. This work aims to present an automated, interpretable impurity prediction workflow based on data mining large chemical reaction databases. A 14-step workflow was implemented in Python and RDKit using Reaxys® data. Evaluation of potential chemical reactions between functional groups present in the same reaction environment in the user-supplied query species can be accurately performed by directly mining the Reaxys® database for similar or ‘analogue’ reactions involving these functional groups. Reaction templates can then be extracted from analogue reactions and applied to the relevant species in the original query to return impurities and transformations of interest. Three proof-of-concept case studies (paracetamol, agomelatine and lersivirine) were conducted, with the workflow correctly suggesting impurities within the top two outcomes. At all stages, suggested impurities can be traced back to the originating template and analogue reaction in the literature, allowing for closer inspection and user validation. Ultimately, this work could be useful as a benchmark for more sophisticated algorithms or models since it is interpretable, as opposed to purely black-box solutions.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信